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ABOUT THE COVER

The cover of the first edition featured a photograph of the collapse
of the Quebec bridge (the cantilever steel bridge in the back-

ground') in 1907. The ultimate cause of the collapse was a major
change in the design specification that was not verified. To save on
: construction cost, the engineer in charge of the project increased the
i span of the bridge from 1600 to 1800 feet, turning the project into
%' the longest bridge in the world, without recalculating weights and
stresses.

In those days, engineers felt they could span any distances, as ever
longer bridges were being successfully built. But each technology
eventually reaches its limits. Almost 100 years after its completion
in 1918 (after a complete re-design and a second collapse!), the

Quebec bridge is sull the longest cantilever bridge in the world?2,
Even with all of the advances in civil engineering and composite
material, cantilever bridging technology had reached its limits.

You cannot realistically hope to keep applying the same solution to
ever increasing problems. Even an evolving technology has its

1. Photo: Phototéque, Transports Québec. Cover designed by Elizabeth
Nephew (www.nephco . com).

1 2. The next longest cantilever bridge, completed in 1890 and composed of
‘ two spans of 1700 feet, is the Firth of Forth Rail Bridge in Scotland.

Writing Testbenches: Functional Verification of HDL Models XV
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limit. Eventually, you will have to face and survive a revolution that
will provide a solution that is faster and cheaper.

Replacing the Quebec bridge with another cantilever structure is
estimated to cost over $600 million today. When it was decided to
span the St-Lawrence river once more in 1970, the high cost of a
cantilever structure caused a different technology to be used: a sus-
pension bridge. The Pierre Laporte Bridge, visible in the fore-
ground, has a span of 2,200 feet and was built at a cost of $45
million. It provides more lanes of traffic over a longer span at a
lower cost and weight. It is better, faster and cheaper. The suspen-
sion bridge technology has replaced cantilever structures in all but
the shortest spans.

The way most design teams are verifying their design today 1is
reaching its limits. With multi-million gate designs requiring over
1,000 different testcases to verify, the number of testcases that will
be required to verify the next generation of designs will become
unmanageable and impossible to complete in time. A revolution in
methodology is required.

Directed testcases, as described in the first edition, were the cantile-
ver bridges of verification. Coverage-driven constrained-random
transaction-level self-checking testbenches are the suspension
bridges. This methodology revolution, enabled by the introduction
of hardware verification languages such as ¢ and OpenVera, make
verifying a design better, faster and cheaper.

I’'m hoping, with this second edition, to facilitate your transition
from ad-hoc, directed testcase verification to a state-of-the-art veri-
fication methodology.

vi
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FOREWORD

The first edition of Janick Bergeron’s Writing Testbenches is inar-
guably the most popular (and successful) contemporary verification
textbook. The timing of Bergeron’s desperately needed first edition
was perfect. The verification challenge was (and continues to be)
on everyone’s mind with recent industry studies estimating that half
of all chips designed today require one or more re-spins. More
importantly, these studies indicate that 74% of all re-spins are due
to functional errors, In addition to the challenges of achieving good
silicon, in many cases verification now consumes significantly
more resources in terms of time and labor than all other combined
processes within the design flow. Clearly verification is the bottle-
neck in a project’s time-to-profit goal.

There are many factors contributing to today’s verification chal-
lenge, including the consumer’s insatiable demand for new product
features (resulting in more complicated design architectures), rising
silicon capacity, as well as breakthroughs in design productivity.
While silicon capacity continues to increase along the Moore’s Law
curve (enabling us to create very complex systems), the effort
required to verify these designs has increased at an even greater,
and thus alarming, rate—doubling roughly every six to nine
months. In addition to rising silicon capacity, our ability to utilize
this larger silicon capacity has also increased approximately ten-
fold within the past decade due to the breakthroughs in synthesis
technology. Yet the ability to verify larger systems has not kept
pace. Rather, verification productivity has experienced only incre-
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mental improvements during the same period. What is clearly
needed in verification techniques and technology is the equivalent
of a synthesis productivity breakthrough.

In the second edition of Writing Testbenches, Bergeron raises the
verification level of abstraction by introducing coverage-driven
constrained-random transaction-level self-checking testbenches—
all made possible through the introduction of hardware verification
languages (HVLs), such as e from Verisity and OpenVera from
Synopsys. The state-of-art methodologies described in Writing Test-
benches will contribute greatly to the much-needed equivalent of a
synthesis breakthrough in verification productivity. I not only
highly recommend this book, but also I think it should be required
reading by anyone involved in design and verification of today’s
ASIC, SoCs and systems.

Harry Foster
Chief Architect
Verplex Systems, Inc.

PREFACE

If you survey hardware design groups, you will learn that between
60% and 80% of their effort is now dedicated to verification.
Unlike synthesizeable coding, there is no particular coding style nor
language required for verification. The freedom of using any lan-
guage that can be interfaced to a simulator and of using any features
of that language has produced a wide array of techniques and
approaches to verification. The absence of constraints and historical
lack of available expertise and references in verification has
resulted in ad hoc approaches. The consequences of an informal
verification process can range from a non-functional design requir-
ing several re-spins, through a design with only a subset of the
intended functionality, to a delayed product shipment,

WHY THIS BOOK IS IMPORTANT

Xviil

Writing Testbenches: Functional Verification of HDL Models

Take a survey of the books about Verilog or VHDL currently avail-
able. You will notice that the majority of the pages are devoted to
explaining the details of the languages. In addition, several chapters
are focused on the synthesizeable—or RTL—coding style replete
with examples. Some books are even devoted entirely to the subject
of RTL coding,

When verification is addressed, only one or two chapters are dedi-
cated to the topic. And often, the primary focus is to introduce more
language constructs. Verification is usually presented in a very rudi-
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mentary fashion, using simple, non-scalable techniques that
become tedious in large-scale, real-life designs.

The first edition of this book was the first book specifically devoted
to functional verification techniques for hardware models. Since
then, several other verification-only books have appeared. Major
conferences now include verification tracks. Universities, in collab-
oration with industry, are now offering verification courses in their
engineering curriculum. Pure verification EDA companies are now
offering new tools to improve productivity and the overall design
quality. All of these contribute to create a formal body of knowl-
edge in design verification. Such a body of knowledge is an essen-
tial foundation to creating a science of verification and fueling
progress in methodology and productivity.

In this second edition, T will present the latest verification tech-
niques that are successfully being used to produce fully functional
first-silicon ASICs, systems-on-a-chip (SoC), boards and entire
systems. It builds on the content of the first edition—transacticn-
level self-checking testbenches—to introduce a revolution in func-
tional verification: coverage-driven constrainable random test-
benches.

WHAT TIIIS BOOK IS ABOUT

I will first introduce the necessary concepts and tools of verifica-
tion, then I'll describe a process for planning and carrying out an
effective functional verification of a design, I will also introduce
the concept of coverage models that can be used in a coverage-
driven verification process.

It will be necessary to cover some VHDL and Verilog language
semantics that are often overlooked or oversimplified in textbooks
intent on describing the synthesizeable subset. These unfamiliar
semantics become important in understanding what makes a well-
implemented and robust testbench and in providing the necessary
control and monitor features. Once these new semantics are under-
stood in a familiar Janguage, the same semantics are presented in
new verification-criented languages.

I'will also present techniques for applying stimulus and monitoring
the response of a design, by abstracting the physical-level transac-

XX
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What Frior Knowledge You Should Have

tions into high-level procedures using bus-functional models. The
architecture of testbenches built around these bus-functional mod-
els is important to create a layer of abstraction relevant to the fune-
tion being verified and to minimize development and maintenance
effort. T also show some strategies for making testbenches self-
checking.

Creating random testbenches involves more than calling the ran-
dom() function in whatever language is used to implement them. [
will show how random stimulus generators, built on top of bus-
functional models, can be architected and designed to be able to
produce the desired stimulus patterns. Random generators must be
easily externally constrained to increase the likelihood that a set of
interesting patterns will be generated.

Behavioral modeling is another important concept presented in this
book. It is used to parallelize the implementation and verification of
a design and to perform more efficient simulations. For many,
behavioral modeling is synonymous with synthesizeable or RTL
modeling. In this book, the term “behavioral” is used to describe
any mode] that adequately emulates the functionality of a design,
usually using non-synthesizeable constructs and coding style.

WHAT PRIOR KNOWLEDGE YOU SHOULD HAVE

This book focuses on the functional verification of hardware
designs using VHDL, Verilog, e or OpenVera. T expect the reader to
have at least a basic knowledge of VHDL, Verilog, OpenVera or e.
Ideally, you should have experience in writing models and be famil-
iar with running a simulation using any of the available VHDL or
Verilog simulators. There will be no detailed description of lan-
guage syntax or grammar. It may be a good idea to have a copy of a

language-focused textbook as a reference along with this book'. I
do not describe a synthesizeable subset, nor limit the implementa-
tion of the verification techniques to using that subset. Verification
is a complex task: The power of a language will be used to its full-
est.

I also expect that you have a basic understanding of digital hard-
ware design. This book uses several hypothetical designs from var-
ious application domains (video, datacom, computing, etc.). How

Writing Testbenches: Functional Verification of HDL Models XXi




Pretace

these designs are actually specified, architected and then imple-
mented is beyond the scope of this book. The content focuses on the
specification, architecture, then implementation of the verification
of these same designs.

READING PATHS

You should really read this book from cover to cover. However, if
you are pressed for time, here are a few suggested paths.

If you are using this book as a university or college textbook, you
should focus-on Chapter 4 through 6 and Appendix A, If you are a
junior engineer who has only recently joined a hardware design
group, you may skip Chapters 3 and 7. But do not forget to read
them once you have gained some experience.

Chapters 3 and 6, as well as Appendix A, will be of interest to a
senior engineer in charge of defining the verification strategy for a
project. If you are an experienced designer, you may wish to skip
ahead to Chapter 3. If yon are an experienced Verilog or VHDL
user, you may wish to skip Chapter 4—but read it anyway, just to
make sure your definition of “experienced” matches mine.

If you have a software background, Chapter 4 and Appendix A may
seem somewhat obvious. If you have a hardware design and RTL
coding mindset, Chapters 4 and 7 are probably your best friends.

1. For Verilog, I recommend The Verilog Hardware Description Language
by Thomas & Moorby, 3rd edition or later (Kluwer Academic Pub-
lisher).

For VHDL, I recommend VHDL Coding Styles and Methodologies by
Ben Cohen (Kluwer Academic Publisher).

For OpenVera, the OpenVera Language Reference Manual is available
at http://Open-Vera.com. Vera users will find the Vera Users Manual
" available under $VERA_HOME/doc/vum.

For e, Specman Elite users will find the e Language Reference Manual
under the HELP menu. It can also be found at https://verificationva-
ult.com.
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Choosing a Language

If your responsibilities are limited to managing a hardware verifica-
tion project, you probably want to concentrate on Chapter 3, Chap-
ter 6 and Chapter 7.

CHOOSING A LANGUAGE

The first decision a design group is often faced with is deciding
which language to use. As the author of this book, I faced the same
dilemma. In many cases, the choice does not exist as the company
has selected a langvage over others and has invested heavily into
supporting that language in terms of licenses, training and intellec-
tual property. But for small companies, companies in transition or
companies without a central CAD group, the answer is usually dic-
tated by the decision maker’s own knowledge or personal prefer-
ence.

VHDL vs. Verilog

In my opinion, VHDL and Verilog are inadequate by themselves,
especially for verification. They are both equally poor for synthe-
sizeable description. Some things are easier to accomplish in one
language than in the other. For a specific model, one language is
better than the other: One language has features that map better to
the functionality to be modeled. However, as a general rule, neither
is better than the other.

Some sections are Verilog only. In my experience, Verilog is a
much abused language. It has the reputation for being easier to
learn than VHDL, and to the extent that the leaming curve is not as
steep, it is true. However, all languages provide similar concepts:
sequential statements, parallel construets, structural constructs and
the illusion of parallelism. '

For all languages, these concepts must be learned. Because of its
lax requirements, Verilog lulls the user into a false sense of security.
The user believes that he or she knows the language because there
are no syntax errors or because the simulation results appear to be
correct. Over time, and as a design grows, race conditions and frag-
ile code structures become apparent, forcing the user to learn these
important concepts. Both languages have the same area under the
learning curve. VHDLs is steeper but Verilog’s goes on for much
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Preface

Choosing a Language

longer. Some sections in this book take the reader farther down the
Verilog learning curve.

Hardware Verification Languages

Hardware verification languages (HVLs) are languages that were
specifically designed to implement testbenches efficiently and pro-
ductively. As I write this book, there are several to choose from.
Commercial sclutions include e from Verisity, OpenVera from Syn-
opsys and RAVE from Forte Design. Open-source solutions include
the SystemC Verification Library (SCV) from Cadence and Jeda
from Juniper Networks. There are also a plethora of home-grown
solutions based on Perl, SystemC, C++ or TCL. Verification exten-
sions to the Verilog language are also being added in SystemVer-
ilog. Not all support a coverage-driven constrainable random
verification strategy (see “Coverage-Driven Random-Based
Approach” on page 109) equally well. Many are still better suited
to a directed test strategy (see “Directed Testbenches Approach” on
page 104).

Switching from Verilog or VHDL to an HVL involves more than
simply learning a new syntax. Although one can continue to use an
HDL-like directed methodology with an HVL, using an HVL
requires a shift in the way verification is approached and test-
benches are implemented. The directed verification strategy used
with Verilog and VHDL is the schematic capture of verification.
Using an HVL with a constraint-driven random verification strat-
egy is the synthesis of verification. When used properly, HVLs are
an incredible productivity boost (see Figure 2-17 on page 63).

If this book had been written from scratch, I would not have both-
ered including Verilog or VHDL examples. Because they were
already there and they can be useful as a foundation for understand-
ing the new concepts provided by HVLs, I"ve decided to keep these
examples. [ also took advantage of this second edition to update the
Verilog content to reflect the new Verilog-2001 standard.

KXiv
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And the Winner Is...

I know VHDL, Verilog, C++, ¢ and OpenVera equally well. I work
using all of them. I teach all of them. When asked which one I pre-
fer, I usually answer that I was asked the wrong question. The right
question should be, “Which one do I hate the least? And the
answer to that question is, “The one F’m not currently working
with.” When working in one language, you do not notice the things
that are simple to describe or achieve in that language. Instead, you
notice the frustrations and how it would be easy to do it if only you
were using the other language.

Verification techniques transcend the language used. VHDL, Ver-
ilog, ¢ and OpenVera are only implementation vehicles. All are
used throughout the book, but examples are typically shown in only
one language. I trust that a monolingual reader will be able to
understand the 'example in the other languages, even though the
syntax is slightly different. In areas where each language requires
different approaches or methodologies, I will present each individu-
ally. However, I will make no attempt to cover all of the features of
each language. This is a methodology book, not a language book.

I have selected e and OpenVera because they are the languages I
know best and, at the time of writing, are the HVLs that best sup-
port a coverage-driven constrainable random verification process.
The book was not written as a medium for comparing language fea-
tures or the number of lines required to implement various func-
tionality. The decision to use one langnage over another involves
more than a mere side-by-side comparison of features and syntax.

The code syntax in all examples, any mentioned language or tool
limitations and any example or discussion of tool output or feature
is up-to-date and factually correct® at the time of writing. For
VHDL, VHDL-93 and ModelSim™ 5.5.¢ were used. For Verilog,
VCSi 6.1 and ModelSim 5.5.¢ were used. For OpenVera, Vera™
6.0.0 was used. For ¢, Specman Elite™ 4.1 was used.

2. I'welcome correction of any factual errors in the book via email at
janick@bergeron . com. These corrections will be posted in the
errata section of the book website.
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A common complaint I received about the first edition was the lack
of complete examples. You'll notice that in this edition, like the
first, code samples are still provided only as excerpts. I fundamen-
tally believe that this is a better way to focus the reader’s attention
on the important point I'm trying to convey. I do not want to bury
you under pages and pages of complete but dry (and ultimately
mostly irrelevant) source code. Instead, the entire source code for
all examples can now be found in the source section at the follow-
ing URL:

http://janick.bergeron.com/wtb

FOR MORE INFORMATION

If you want more information on topics mentioned in this book, you
will find links to relevant resources in the book-companion Web
site at the following URL:

http://janick.bergeron. com/wth

In the resources area, you will find links to publicly available utili-
ties, documents and tools that make the verification task easier. You
will also find an errata section listing and correcting the errors that

inadvertently made their way in this edition,>
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“Everyone knows
debugging is twice as hard
‘ | as writing a program

in the first place”

- Brian Kemighan
“Elements of Programming Style”
1974
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CHAPTER 1

WHAT IS VERIFICATION?

Verification is not a testbench, nor is it a series of testbenches. Veri-
fication is a process used to demonstrate that the intent of a design
is preserved in its implementation. We all perform verification pro-
cesses throughout our daily lives: balancing a checkbook, tasting a
simmering dish, associating landmarks with symbols on a map.
These are all verification processes.

In this chapter, I introduce the basic concepts of verification, from
its importance and cost, to making sure you are verifying that you
are implementing what you want. We look at the differences
between various verification approaches as well as the difference
between testing and verification. I also show how verification is
key to design reuse, and I show the challenges of verification reuse.

WHAT IS A TESTBENCH?

The term “testbench” usually refers to simulation code used to cre-
ate a prdetermined input sequence to a design, then optionally to
observe the response. A testbench is commonly implemented using
VHDL, Verilog, ¢ or OpenVera, but it may also include external
data files or C routines. ‘

Figure 1-1 shows how a testbench interacts with a design under
verification (DUV). The testbench provides inputs to the design and
watches any outputs. Notice how this is a completely closed sys-
tem: no inputs or cutputs go in or out. The testbench is effectively a
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What is Verification?

Figure 1-1.

Generic
structure of a

testbench and

design under
verification

model of the universe as far as the design i concerned. The verifi-
cation challenge is to determine what input patterns to supply to the
design and what is the expected output of a properly. working
design when submitted to those input patterns.

Testbench

Design
—>» under [—»
WVerification

THE IMPORTANCE OF VERIFICATION

Most books focus
on syntax, seman-
tic and RTL sub-
set.

70% of design
effort goes to veri-
fication.

If you look at a typical book on Verilog or VHDL, you will find that
most of the chapters are devoted to describing the syntax and

- semantics of the language. You will also invariably find two or

three chapters on synthesizeable coding style or Register Transfer
Level (RTL) subset.

Most often, only a single chapter is dedicated to testbenches, Very
little can be adequately explained in one chapter and these explana-
tions are usually very simplistic. In nearly all cases, these books
limit the techniques described to applying simple sequences of vec-
tors in a synchronous fashion. The output is then verified using a
waveform viewing tool. Most books also take advantage of the
topic to introduce the file input mechanisms offered by the lan-
guage, devoting yet more content to detailed syntax and semantics.

Given the significant proportion of literature devoted to writing
synthesizeable VHDL or Verilog code compared to writing test-
benches to verify their functional correctness, you could be tempted
to conclude that the former is a more daunting task than the latter.
The evidence found in all hardware design teams points to the con-
trary.

Today, in the era of multi-million gate ASICs, reusable intellectual
property (IP), and system-on-a-chip (SoC) designs, verification
consumes about 70% of the design effort. Design teams, properly
staffed to address the verification chailenge, include engineers ded-
icated to verification. The number of verification engineers can be
up to twice the number of RTL designers.

Writing Testbenches: Functional Verification of HDL Models

The Importance of Verification

Verification is on
the critical path.

Verification time
can be reduced
through paraliel-
ism.

Verification time
can be reduced
through abstrac-
tion.

Using abstraction
reduces control
over low-level
details.

Verification time
can be reduced
through automa-
tion.

Given the amount of effort demanded by verification, the shortage
of qualified hardware design and verification engineers, and the
quantity of code that must be produced, it is no surprise that, in all
projects, verification rests squarely in the critical path. The fact that
verification is often considered after the design has been completed,
when the schedule has already been ruined, compounds the prob-
lem. It is also the reason verification is currently the target of new
tools and methodelogies. These tools and methodologies attempt to
reduce the overall verification time by enabling parallelism of
effort, higher abstraction levels and antomation.

If efforts can be parallelized, additional resources can be applied
effectively to reduce the total verification time. For example, dig-
ging a hole in the ground can be parallelized by providing more
workers armed with shovels. To parallelize the verification effort, it
is necessary to be able to write—and debug—testbenches in paral-
lel with each other as well as in parallel with the implementation of
the design.

Providing higher abstraction levels enables you to work more effi-
ciently without worrying about low-level details. Using a backhoe
to dig the same hole mentioned above is an example of using a
higher abstraction level.

Higher abstraction levels are usnally accompanied by a reduction in
control and therefore must be chosen wisely. These higher abstrac-
tion levels often require additional training to understand the
abstraction mechanism and how the desired effect can be produced.

Using a backhoe to dig a hole suffers from the same loss-of-control
problem: The worker is no longer directly interacting with the dirt;
instead the worker is manipulating levers and pedals. Digging hap-
pens much faster, but with lower precision and only by a trained
operator. The verification process can use higher abstraction levels
by working at the transaction- or bus-cycle levels (or even higher
ones), instead of always dealing with low-level zeroes and ones.

Automnation lets you do something else while a machine completes
a task autonomously, faster and with predictable results. Automa-
tion requires standard processes with well-defined inputs and out-
puts. Not all processes can be automated. For example, holes must
be dug in a variety of shapes, sizes, depths, locations and in varying
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What is Verification?

Randomization
can be used as an
automation tool.

soil conditions, which render general-purpose automation impossi-
ble.

Verification faces similar challenges. Because of the variety of
functions, interfaces, protocols and transformations that must be
verified, it is not possible to provide a general purpose automation
solution for verification, given teday’s technology. It is possible to
automate some portion of the verification process, especiaily when
applied to a narrow application domain. For example, trenchers
have automated digging holes used to lay down conduits or cables
at shallow depths. Tools automating various portions of the verifi-
cation process are being introduced. For example, there are tools
that will automatically generate bus-functional models from a
higher-leve] abstract specification.

For specific domains, automation can be emulated using random-
ization. By constraining a random generator to produce valid inputs
within the bounds of a particular domain, it is possible to automati-
cally produce almost all of the interesting conditions, For example,
the tedious process of vacuuming the bottom of a pool can be auto-
mated using a broom head that, constrained by the vertical walls,
randomly moves along the bottom. After a few hours, only the cor-
ners and a few small spots remain to be cleaned manually. This type
of autormnation process takes more computation time to achieve the
same result, but it is completely autonomous, freeing valuable
resources to work con other critical tasks. Furthermore, this process

can be parallelizecll easily by concurrently running several random
generators. They can also operate overnight, increasing the total
number of productive hours.

1. Optimizing these concurrent processes to reduce the amount of overlap
is another question!
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Reconvergence Model

RECONVERGENCE MODEL

Do you know what
you are actually
verifying?

Figure 1-2,

Reconvergent
paths in
verification

Verification is the
reconciliation,

through different -

means, of a speci-
fication and an
output.

The reconvergence model is a Clonceptual representation of the veri-
fication process. It is used to illustrate what exactly is being veri-
fied. :

One of the most important questions you must be able to answer is:
What are you verifying? The purpose of verification is to ensure
that the result of some transformation is as intended or as expected.
For example, the purpose of balancing a checkbook is to ensure that
all transactions have been recorded accurately and confirm that the
balance in the register reflects the amount of available funds.

Transformation

e

Figure 1-2 shows that verification of a transformation can be
accomplished only through a second reconvergent path with a com-
mon source. The transformation can be any process that takes an
input and produces an output. RTL coding from a specification,
insertion of a scan chain, synthesizing RTL code into a gate-level
netlist and layout of a gate-level netlist are some of the transforma-
tions performed in a hardware design project. The verification pro-
cess reconciles the result with the starting point. If there is no
starting point common to the transformation and the verification, #o
verification takes place.

The reconvergent model can be described using the checkbook
example as illustrated in Figure 1-3. The common origin is the pre-
vious month’s balance in the checking account. The transformation
is the writing, recording and debiting of several checks during a
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one-month period. The verification reconciles the final balance in
the checkbook register using this month’s bank statement.

Figure 1-3, Recording Checks

Bl;llancblng a Balance from m Balﬂnce f1‘0m

checkbook is a last month’s latest

verification statement ® o & statement

process N Reconciliion

THE HUMAN FACTOR
If the transformation process is not completely automated from end
to end, it is necessary for an individual {or group of individuals) to
interpret a specification of the desired outcome and then perform
the transformation. RTL coding is an example of this situation. A
design team interprets a written specification document and pro-
duces what they believe to be functionally correct synthesizeable -
HDL code. Usually, each engineer is Ieft to verify that the code
written is indeed functionally correct.

Figure 1-4. ‘ RTL coding 7

Reconvergent

paths in Specifi- ® Interpre- @

ambiguous cation tation o

situation Verification

Verifying your Figure 1-4 shows the reconvergent path model of the situation

own design veri-
fies against your
interpretation, not
against the specifi-
cation.

described above. If the same individual performs the verification of
the RTL coding that initially required interpretation of a specifica-
tion, then the common origin is that interpretation, not the specifi-
cation,

In this situation, the verification effort verifies whether the design
accurately represents the implementer s interpretation of that speci-
fication, Tf that interpretation is wrong in any way, then this verifi-
cation activity will never highlight it.

Any human intervention in a process is a source of uncertainty and
unrepeatability. The probability of human-introduced errors in a
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Automation

Eliminate human
intervention,

Poka-Yoke

Make human inter-
vention foolproof.

Reduadancy

Have two individ-
vals check each
other’s work.

process can be reduced through several complementary mecha-
nisms; automation, poka-yoke or redundancy.

Automation is the obvious way to eliminate human-introduced
Errors in a process, Automation takes human intervention com-
pletely out of the process. However, automation is not always pos-
sible, especially in processes that are not well-defined and continue
to require human ingenuity and creativity, such as hardware design.

Another possibility is to mistake-proof the human intervention by
reducing it to simple, and foolproof steps. Human intervention is
needed only to decide on the particular sequence or steps required
to obtain the desired results. This mechanism is also known as
poka-yoke in Total Quality Management circles. It is usually the
last step toward complete automation of a process. However, just
like automation, it requires a well-defined process with standard
transformation steps. The verification process remains an art that,
to this day, does not yield itself to well-defined steps.

The final alternative to removing human errors is redundancy. It is
the simplest, but also the most costly mechanism. Redundancy
requires every transformation resource to be duplicated. Every
transformation accomplished by a human is either independently
verified by another individual, or two complete and separate trans-
formations are performed with each outcome compared to verify
that both produced the same or equivalent output. This mechanism
is used in high-reliability environments, such as airborne and space
systems. It is also used in industries where later redesign and
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Figure 1-5.

Redundancyin
an ambiguous
situation
enables
accurate
verification

A different person
should be in
charge of verifica-
tion,

replacement of a defective product would be more costly than the
redundancy itself, such as ASIC design.

Interpre- RTL coding

e tmee
e .
erification
® 4—//

Interpre-
tation
Figure 1-5 shows the reconvergent paths model where redundancy
is used to guard against misinterpretation of an ambiguous specifi-
cation document, When used in the context of hardware design,
where the transformation process is writing RTL code from a writ-
ten specification document, this mechanism implies that a different
individual must be in charge of the verification.

WHAT IS BEING VERIFIED?

Choosing the common origin and reconvergence points determines
what is being verified. These origin and reconvergence points are
often determined by the tool used to perform the verification. It is
important to understand where these points lie to know which trans-
formation is being verified. Formal verification, model checking,
functional verification, and rule checkers verify different things
because they have different origin and reconvergence points.

Formal Verification

Formal verifica-
tion does not elim-
inate the need to
write testbenches.

Formal verification is often misunderstood initially. Engineers
unfamiliar with the formal verification process often imagine that it
is a tool that mathematically determines whether their design is cor-
rect, without baving to write testbenches. Once you understand
what the end points of the formal verification reconvergent paths
are, you know what exactly is being verified.

The application of formal verification falls under two broad catego-
ries: equivalence checking and model checking.

Writing Testbenches: Functional Verification of HDL Models

What Is Being Verified?

Equivalence Checking

Equivalence
checking com-
pares two models.

Figure 1-6.

Equivalence
checking paths

Itcan compare two
netlists, ‘

It can detect bugs
in the synthesis
software,

Figure 1-6 shows the reconvergent path model for equivalence
checking. This formal verification process mathematically proves
that the origin and output are logically equivalent and that the trans-
formation preserved its functionality.

Synthesis
RTL or /\4 RTL or
Netiist ® ® Netist
Equivalence
Checking

In its most common use, equivalence checking compares two
netlists to ensure that some netlist post-processing, such as scan-

chain insertion, clock-tree synthesis or manual modiﬁcationz, did
not change the functionality of the circuit.

Another popular use of equivalence checking is to verify that the
netlist correctly implements the original RTL code. If one trusted
the synthesis tool completely, this verification would not be neces-
sary. However, synthesis tools are large software systems that
depend on the correctness of algorithms and library information.
History has shown that such systems are prone to error. Equiva-
lence checking is used to keep the synthesis tool honest. In some
rare instances, this form of equivalence checking is used to verify |
that manually written RTL code faithfully represents a legacy gate-
level design.

Less frequently, equivalence checking is used to verify that two
RTL descriptions are logically identical, sometimes to avoid mn-
ning lengthy regression simulations when only minor non-func-
tional changes are made to the source code to obtain better
synthesis results, or when a design is translated from an HDL to
another.

2. Text editors remain the greatest design tools!
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Equivalence Equivalence checking is a true alternative path to the logic synthe-
checking founda  sis transformation being verified. It is only interested in comparing
:fegﬁlc“o“‘;:‘;th' Boolean and sequential logic functions, not mapping these func-
peraor tions to a specific technology while meeting stringent design con-
straints. Engineers using equivalence checking found a design at
Digital Equipment Corporation (now part of HP) to be synthesized
incorrectly. The design used a synthetic operator that was function-
ally incorrect when handling more than 48 bits. To the synthesis
tool’s defense, the documentation of the operator clearly stated that
correctness was not guaranteed above 48 bits. Since the synthesis
tool had no knowledge of documentation, it could not know it was
generating invalid logic. Equivalence checking quickly identified a
problem that could have been very difficult to detect using gate-

level simulation,

Model Checking

Model checking Model checking is a more recent application of formal verification
proves assertions  technology. In it, assertions or characteristics of a design are for-
2?‘;1’; t::sibe:a‘”“’ mally proven or disproved. For example, all state machines in a
e design could be checked for unreachable or isolated states. A more
powerful model checker may be able to determine if deadlock con-

ditions can occur.

Another type of assertion that can be formally verified relates to
interfaces. Using a formal description language, assertions about
the interfaces of a design are stated and the tool attempts to prove or
disprove them. For example, an assertion might state that, given
that signal ALE will be asserted, then either the DTACK or
ABORT signal will be asserted eventually.

RTL Coding

Figore 1-7. '
Model y //_\
checking paths Specifi- ® ,

@ RTL

cation %ﬁtaﬁon’ ‘_NI‘OW
| ® Checking

Assertions
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‘What Is Being Verified?

Knowing which The reconvergent path model for model checking is shown in
assertions toprove  Figure 1-7 . The greatest obstacle for model checking technology is
E:;’;gﬁ:i‘;fis identifying, through interpretation of the design specification,
the most difficat ¥RCh assertions to prove. Of those assertions, only a subset can be
part. proven feasibly. Current technology cannot prove high-level asser-
tions about a design to ensure that complex functionality is cor-
rectly implemented. It would be nice to be able to assert that, given
specific register settings, a set of asynchronous transfer mode
{ATM) cells will end up at a set of outputs in some relative order.

Unfortunately, model checking technology is not at that level yet.

Functional Verification

Figore 1.8, ‘ RTL Coding
Functional m
verification Specifi-
paths cation ® @ RTL
Functional
Verification

Functional verifi- ~ The main purpose of functional verification is to ensure that a

cation verifies design implements intended functionality. As shown by the recon-

design intent. vergent path model in Figure 1-8, functional verification reconciles
a design with its specification. Without functional verification, one
must trust that the transformation of a specification document into
RTL code was performed correctly, without misinterpretation of the
specification’s intent.

Youcanprove the It is important to note that, unless a specification is written in a for-

presence f Ugs, 1141 Janguage with precise semantics,? it is impossible to prove that
but you cannot

prove their a design meets the intent of its specification. Specification docu-
absence. - ments are written using natural languages by individuals with vary-
ing degrees .of ability in communicating their intentions. Any
document is open to interpretation. Functional verification, as a
process, can show that a design meets the intent of its specification,
But it cannot prove it. One can easily prove that the design does not
implement the intended function by identifying a single discrep-

3. Even if such a language existed, one would eventually have to show
that this description is indeed an accurate description of the design
intent, based on some higher-level ambiguous specification.
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ancy. The converse, sadly, is not true: No one can prove that there
are no discrepancies, just as no one can prove that flying reindeers
or UFOs do not exist. (However, producing a single flying reindeer
or UFO would be sufficient to prove the opposite!)

FUN CTIONAL VERIFICATION APPROACHES

Functional verification can be accomplished using three comple-
mentary approaches: black-box, white-box and grey-box.

Black-Box Verification

Black-box verifi-
cation cannot look
at or know about
the inside of a
design,

Testcase is inde-
pendent of imple-
mentation.

With a black-box approach, the functional verification is performed
without any knowledge of the actual implementation of a design.
All verification is accomplished through the available interfaces,
without direct access to the internal state of the design, without
knowledge of its structure and implementation. This method suffers
from an obvious lack of visibility and controllability. It is often dif-
ficult to set up an interesting state combination or to isolate some
functionality. It is equally difficult to observe the response from the
input and locate the source of the problem. This difficulty arises
from the frequent long delays between the occurrence of a problem
and the appearance of its symptom on the design’s outputs.

The advantage of black-box verification is that it does not depend
on any specific implementation. Whether the design is imple-
mented in a single ASIC, RTL code, gates, multiple FPGAs, a cir-
cuit board or entirely in software, is irrelevant. A black-box
functional verification approach forms a true conformance verifica-
tion that can be used to show that a particular design implements
the intent of a specification, regardless of its implementation.

My mother is a veteran of the black-box approach: To prevent us
from guessing the contents of our Christmas gifts, she never puts

any names on the wrapped boxes*. At Christmas, she has to cor-
rectly identify the content of each box, without opening it, so it can
be given to the intended recipient. She has been known to fail on a
few occasions, to the pleasure of the rest of the party!

4. To my wife’s chagrin who likes shaking any box bearing her name.
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Functional Verification Approaches

In black-box veri-
fication, it is diffi-
cult to control and
observe specific
features,

Figure 1-9,

Black-box

verification of

a low-level
feature

The pure black-box approach is impractical in today’s large
designs. A multi-million gates ASIC possesses too many internal
signals and states to effectively verify all of its functionality from
its periphery. Critical functions, deep into the design, will be diffi-
cult to control and observe. Furthermore, a design fault may not
readily present symptoms of a flaw at the outputs of the ASIC, For
example, the black-box ASIC-level testbench in Figure 1-9 is used
to verify a critical round-robin arbiter. If the arbiter is not com-
pletely fair in its implementation, what symptoms would be visible
at the outputs? This type of fault could be only found through per-
formance analysis of several long simulations to identify discrepan-
cies between the actual throughput of a channel compared with its
theoretical throughput.

ASIC-Level > ASIC-Level
Stimulus I Response

White-Box Verification

White box verifi-
cation has inti-
mate knowiedge
and control of the
internals of a
design.

White-hox verifi-
cation is tied to a
specific imple-
mentation.

White-box tech-
niques can aug-

ment black-box

approaches.

As the name suggests, a white-box approach has full visibility and
controllability of the internal structure and implementation of the
design being verified. This method has the advantage of being able
to set up an interesting combination of states and inputs quickly, or
to isolate a particular function. It can then easily observe the results

" as the verification progresses and immediately report any discrep-

ancies from the expected behavior.

However, this approach is tightly integrated with a particular imple-
mentation. Changes in the design may require changes in the test-
bench. Furthermore, those testbenches cannct be used in gate-level
simulations, on alternative implementations or future redesigns. It
also requires detailed knowledge of the design implementation to
know which significant conditions to create and which results to
observe,

‘White-box verification is a useful complement to black-box verifi-
cation. This approach can ensure that low-level implementation-
specific features behave properly, such as counters rolling over
after reaching their end count value or datapaths being appropri-
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Figure 1-10.

White-box
checks in
black-box
environment

White-box is used
in system-level
verification.

ately steered and sequenced. The white-box approach can be used
only to verify the correctness of the functionality, while still relying
on the black- or grey-box stimulus. For example, Figure 1-10
shows the black-box ASIC-level environment shown in Figure 1-9
augmented with white-box checks to verify the functional correct-
ness of the round-robin arbiter. Should fairess not be implemented
correctly, the white-box checks would immediately report a failure.
The reported error would also make it easier to identify and confirm
the cause of the problem. A 2% discrepancy in a channel through-
put in three overnight simulations can be explained easily as a sim-
ple statistical error.

ASIC-Level Lid ASIC-Level
Stimulus %] Response
|
|
| [
L Block-Level
Y — — 9 Checks

A pure white-box verification approach is often used on SoC design
and system-level verification. A system is defined as a design com-

posed of independently designed and verified components, The

objective of system-level verification is to verify the system-level
features, not re-verify the individual components. Because of the
large number of possible states and the difficulty in setting up inter-
esting conditions, system-level verification is often accomplished
by treating it as a collection of black-boxes. The independently-
designed components are treated as black-boxes, but the system
itself is treated as a white-box, with full controllability and observ-
ability,

14
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Functional Verification Approaches

Testcase may not
be relevant on
another implemen-
tation,

Add functions to
the design to
increase controlla-
bility and observ-
ability

White-box cannot

Grey-Box Verification

Grey-box verification is a compromise between the aloofness of a
biack-box verification and the dependence on the implementation
of white-box verification. The former may not fully exercise all
parts of a design, while the latter is not portable.

As in black-box verification, a grey-box approach controls and
observes a design entirely through its top-level interfaces, How-
ever, the particular verification being accomplished is intended to
exercise significant features specific to the implementation. The
same verification of a different implementation would be success-
ful, but the verification may not be particularly more interesting
than any other black-box verification. A typical grey-box test case
is one written to increase coverage metrics. The input stimulus is
designed to execute specific lines of code or create a specific set of
conditions in the design. Should the structure (but not the function)
of the design change, this test case, while still correct, may no
longer contribute toward better coverage.

A typical grey-box strategy is to include some non-functional mod-
ifications to provide additional visibility and controllability. Exam-
ples include additional software-accessible registers to control or
observe internal states, speed up a real-time counter, force the rais-
ing of exception or modify the size of the processed data to mini-
mize verification time. These registers and features would not be
used during normal operations, but they are often valuable during
the integration phase of the first prototype systems,

The black-box and grey-box approaches are the only ones that can

beusedin parallel b used if the functional verification is to be implemented in paral-

with design. lel with the implementation using a behavioral model of the design
(see “Behavioral Models” on page 375). Because there is no
detailed implementation to know about beforehand, these two veri-
fication strategies are the only possible avenue.
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TESTING VERSUS VERIFICATION

Testing verifies
manufacturing,

Figore 1-11,

Testing vs,
Verification

Testing verifies
that internal nodes
can be toggled.

Thoroughness of
testing depends on
controllability and
observability of
internal nodes.

Testing is often confused with verification. The purpose of the
former is to verify that the design was manufactured correctly. The
purpose of the latter is to ensure that a design meets its functional
intent.

HW Design Manufacturing
Specifi- /’\ . .
cation .\J Netlist @ Silicon
Verification Testing

Figure 1-11 shows the reconvergent paths models for both verifica-
tion and testing. During testing, the finished silicon is reconciled
with the netlist that was submitted for manufacturing.

Testing is accomplished through test vectors. The objective of these
test vectors is not to exercise functions. It is to exercise physical
locations in the design to ensure that they can go from 0 to 1 and
from 1 to 0 and that the change can be observed. The ratio of physi-
cal locations tested to the total number of such locations is called
test coverage. The test vectors are usnally automatically generated
to maximize coverage while minimizing vectors through a process
called automatic test pattern generation (ATPG).

Testing and test coverage depends on the ability to set internal
physical locations to either 1 or 0, and then observe that they were
indeed appropriately set. Some designs have very few inputs and
outputs, but these designs have a large number of possible states,
requiring long sequences to observe and control all internal physi-
cal locations properly. A perfect example is an electronic wrist-
watch: It has three or four inputs (the buttons around the dial) and a
handful of outputs (the digits and symbols on the display). How-
ever, if it includes chronometer and calendar functions, it has bil-
lions of possible state combinations (hundreds of years divided into
milliseconds). At speed, it would take hundreds of years to take
such a design through all of its possible states.

16
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Scan-Based Testing

Linking alf regis-
ters into a long
shift register
increases
controllability and
observability.

Figure 1-12.

Scan-based
testing

Scan-based test-
ing puts restric-
tions on design.

Fortunately, scan-based testability techniques help reduce this prob-
lem to something manageable. With scan-based tests, all registers
inside a design are hooked-up in a long serial chain. In normal
mode, the registers operate as if the scan chain was not there (see
Figure 1-12(a)). In scan mode, the registers operate as a long shift
register (see Figure 1-12(b)).

To test a scannable design, the unit under test is put into scan mode,
then an input pattern is shifted through all of its internal registers.
The design is then put into normal mode and a single clock cycle is
applied, loading the result of the normal operation based on the
scanned state into the registers. The design is then put into scan
mode again. The result is shifted out of the registers (at the same
time the next input pattern is shifted in), and the result is compared
against the expected value.

{a) Normal mode (b) Scan-mode

This increase in controllability and observability, and thus test cov-
erage, comes at a cost. Certain restrictions are put onto the design to
enable the insertion of a scan chain and the automatic generation of
test patterns. Some of these restrictions include, but are not limited
to: fully synchronous design, no derived or gated clocks and use of
a single clock edge. The topic of design for testability is far greater
and complex than this simple introduction implies. For more

details, there are several excellent books® and papers® on the sub-
ject.

3. Abramovici, Breuer, and Friedman. Digital System Testing and Testable
Design, IEEE. ISBN 0780310624

6. Cheung and Wang, “The Seven Deadly Sins of Scan-Based Design,”
Integrated System Design, Aug. 1997, p50-56.
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The benefits of
scan-based testing
far outweighs the
drawbacks of these
restrictions,

Hardware designers introduced to scan-based testing initially rebel
against the restrictions imposed on them. They see only the imme-
diate area penalty and their favorite design technique rendered ille-
gal. However, the increased area and additional design effort are
quickly outweighed when a design can be fitted with one or more
scan chains, when test patterns are generated and high test coverage
is achieved automatically, at the push of a button. The time saved
and the greater confidence in putting a working product on the mar-
ket far outweighs the added cost for scan-based design.

Design for Verification

Verification must
be considered dur-
ing specification.

Design practices need to be modified to accommodate testability
requirements. Isn’t it acceptable to modify those same design prac-
tices to accommodate verification requirements?

With functional verification requiring more effort than design, it is
reasonable to require additional design effort to simplify verifica-
tion, Just as scan chains are put in a design to improve testability
without adding to the functionality, it should be standard practice to
add non-functional structures and features to facilitate verification,
This approach requires that verification be considered at the outset
of a project, during its specification phase. Not only should the
architect of the design answer the question, “What is this supposed
to do?” but also, “How is this thing going to be verified?”

Typical design-for-verification techniques include well-defined
interfaces, clear separation of functions in relatively independent
units, providing additional software-accessible registers to contro]
and observe internal locations and providing programmable multi-
Plexers to isolate or bypass functional units.

18
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Design and Verification Reuse

DESIGN AND VERIFICATION REUSE

Today, design reuse is a fact of life. It is the best way to overcome
the difference between the number of transistors that can be manu-
factured on a single chip and the number of transisters engineers
can take advantage of in a reasonable amount of time. This differ-
ence is called the productivity gap. Design reuse was originally
thought to be a simple concept that would be easy to put in practice.
The reality proved—and continues to prove—to be more problem-
atic.

Reuse Is About Trust

You won’t use
what you do not
trust.

Proper functional
verification dem-
onstrates trustwor-
thiness of a design.

The major obstacle to design reuse is cultural. Engineers have little
incentive and willingness to incorporate an unknown design into
their own. They do not trust that the other design is as good or as
reliable as one designed by themselves. The key to design reuse is
gaining that trust.

Trust, like quality, is not something that can be added to a design
after the fact. It must be built-in, through the best possible design
practices. And it must be earned by standing behinc.l a re':usat.)le
design: Providing support services and building a relationship with
the user. Once that trust is established, reuse will happen more
often.

Trustworthiness can be also demonstrated through a proper verifi-
cation process. By showing the user that a design has been th.or—
ocughly and meticulously verified according to the design
specification, trust can be built and communicated much faster.
Functional verification is the only way to demonstrate that the
design meets, or even exceeds, the quality of a similar design that
an engineer could do himself or herself.
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Verification for Reuse

Reusable designs
must be verified to
a greater degree of
confidence.

All claims, possi-
ble configurations
and uses must be
verified.

If you create a design, you have a certain degree of confidence in
your own abilities as a designer and implicitly trust its correctness.
Functional verification is used only to confirm that opinion and to
augment that opinion in areas known to be weak. If you try to reuse
a design, you can rely only on the functional verification to build
that same level of confidence and trust. Thus, reusable designs must
be verified to a greater degree of confidence than custom designs.

Because reusable designs tend to be configurable and programma-
ble to meet a variety of possible environment and applications, it is
necessary to verify a reusable design under all possible configura-
tions and for all possible uses. All claims made about the reusable
design must be verified and demonstrated to users,

Verification Reuse

Testbench compo-
nents can be
reused also.

Figure 1-13,

Reusing
BFMs from
block-level
testbench in
system-level
testbench

Verification reuse
has its challenges.

If portions of a design can be reused, portions of testbenches can be
reused as well. For example, Figure 1-13 shows that the bus-func-
tional model used to verify a design block (a) can be reused to ver-
ify the system that uses it (b).

DUV |
UV T N y
(a) Block testbench (b) System testbench

There are degrees of verification reuse, some easier to achieve, oth-
ers facing difficulties similar to design reuse. Reusing BFMs across
different testbenches and test cases for the same design is a simple
process of properly architecting a verification environment, Reus-
ing testbench components or test cases in a subsequent revision of
the same design presents some difficulties in introducing the verifi-
cation of the new features. Reusing a testbench component between
two different projects or between two different levels of abstraction
has many challenges that must be addressed when designing the
component itself.

20
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The Cost of Verification

Salvaging is not
reuse,

Block- and sys-
tem-level test-
benches put
different require-
ments on a BFM.,

Salvaging is reusing a piece of an existing testbench that was not
expressly designed to be reused. The suitability of the salvaged
component will vary greatly depending on the similarities between
the needs of the design to be verified and those of the original
design. For example, a BFM that was designed to verify an inter-
face block (as in Figure 1-13 (a)) may not be suitable for verifying a
systern using that interface block.

Block-level verification must exercise the state machines and
decoders used in implementing the interface protocol. This verifica-
tion requires a transaction-level BFM with detailed controls of the
protocol signals to vary timing or inject protocol errors. However,
the system-level verification must exercise the high-level function-
ality that resides behind the interface block. This verification
requires the ability to encapsulate high-level data onto the interface
transactions, The desired level of controliability resides at a much
higher level than the signal-level required to verify the interface
block.

THE COST OF VERIFICATION

As the number of
errors left to be
found decreases,
the time—and
cost—to identify
them increases.

Verification is a necessary evil. It always takes too long and costs
too much. Verification does not directly generate a profit or make
money: After all, it is the design being verified that will be sold and
ultimately make money, not the verification. Yet verification is

- indispensable. To be marketable and create revenues, a design must

be functionally correct and provide the benefits that the customer
requires.

Verification is a process that is never truly complete. The objective
of verification is to ensure that a design is error-free, yet one cannot
prove that a design is error-free. Verification can show only the
presence of errors, not their absence. Given enough time, an error
will be found. The question thus becomes: Is the error likely to be
severe enough to warrant the effort spent identifying it? As more
and more time is spent on verification, fewer and fewer errors are
found with a constant incremental effort expenditore. As verifica-
tion progresses, it has diminishing returns. It costs more and more
to find each remaining error.

Functional verification is similar to statistical hypothesis testing.
The hypothesis under test is: "Is my design [unctionally correct?"

Writing Testbenches: Functional Verification of HDL Models 21
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Figure 1-14.

Type I & 11
mistakes

False positives

must be avoided.

The answer can be either yes or no. But either answer could be
wrong. These wrong answers are Type II and Type I mistakes,
respectively.

Fail Pass
Bad Type II
Design (False Positive)
Good Type 1
Design | (False Negative)

Figure 1-14 shows where each type of mistake occurs. Type I mis-
takes, or false negatives, are the easy ones to identify. The verifica-
tion is finding an error where none exist. Once the misinterpretation
is identified, the implementation of the verification is modified to
change the answer from “no” to "yes," and the mistake no longer
exists. Type II mistakes are the most serious ones: The verification
failed to identify an error. Tn a Type II mistake, or false positive sit-
uation, a bad design is shipped unknowingly, with all the potential
consequences that entails.

The United States Food and Drug Administration faces Type TI mis-
takes on a regular basis with potentially devastating consequences:
In spite of positive clinical test results, is a dangerous drug released
on the market? Shipping a bad design may result in simple product
recall or in the total failure of a space probe after it has landed on
another planet.

With the future of the company potentially at stake, the 64-thousand
dollar question in verification is: "How much is enough?” The func-
tional verification process presented in this book, along with some
of the tools described in the next chapter attempt to answer that
question.

The 64-million dollar question is: "When will I be done?” Knowing
where you are in the verification process, although impossible to
establish with certainty, is much easier to estimate than how long it
will take to complete the job. The verification planning process
described in Chapter 3 creates a tool that enables a verification

22
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. E Summary

manager to better estimate the effort and time required to complete
the task at hand, to the degree of certainty required.

SUMMARY

Verification is a process, not a set of testbenches.

Verification can be only accomplished through an independent path
between a specification and an implementation. It is important to
understand where that independence starts and to know what is
being verified.

: Verification can be performed at various levels of the design hierar-
| chy, with varying degrees of visibility within those hierarchies. I
i prefer a black-box approach because it yields portable testbenches.
Augment with grey and white-box testbenches to meet your goals.

Consider verification at the beginning of the design. If a function
would be difficult to verify, modify the design fo give the necessary
observability and controllability over the function.
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CHAPTER 2

VERIFICATION TOOLS

Not all tools are
mentioned in
this chapter. It is
not necessary to
use all the tools
mentioned.

No endorse-
ments of com-
mercial tools,

As mentioned in the previous chapter, one of the mechanisms that
can be used to improve the efficiency and reliability of a process is
automation. This chapter covers tools used in a state-of-the-art
functional verification environment. Some of these tools, such as
simulators, are essential for the functional verification activity to
take place. Others, such as linting or code coverage tools, automate
some of the most tedious tasks of verification and help increase the
confidence in the outcome of the functional verification.

It is not necessary to use all of the tools described here, Nor is this
list exhaustive, as new application-specific and general purpose
verification automation tools are regularly brought to market. As a
verification engineer, your job is to use the necessary tools to
ensure that the outcome of the verification process is not a Type 1T
mistake, which is a false positive. As a project manager responsible
for the delivery of a working product on schedule and within the
allocated budget, your responsibility is to arm your engineers with
the proper tools to do their job efficiently and with the necessary
degree of confidence. Your job is also to decide when the cost of
finding the next functional bug has increased above the value the
additional functional correctness brings. This last responsibility is
the heaviest of them all. Some of these tools provide information to
help you decide when you'’ve reached that point,

I'mention some commercial tools by name. They are used for illus-
trative purposes only and this does not constitute a personal
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endorsement. 1 apologize in advance to suppliers of competitive
products I fail to mention. It is not an indication of inferiority, but
rather an indication of my limited knowledge. All trademarks and
service marks, registered or not, are the property of their respective
owners.

LINTING TOOLS

Linting tools find ~ The term “lint” comes from the name of a UNIX utility that parses

common program- 3 C program and reports questionable uses and potential problems.

mer mistakes, When the C programming language was created by Dennis Ritchie,
it did not include many of the safegnards that have evolved in later
versions of the language, like ANSI-C or C++, or other strongly-
typed languages such as Pascal or ADA. lint evolved as a tool to
identify common mistakes programmers made, letting themn find
the mistakes quickly and efficiently, instead of waiting to find them
through a dreaded segmentation fault during execution of the pro-
gram,

lint identifies real problems, such as mismatched types between
arguments and function calls or mismatched number of arguments,
as shown in Sample 2-1. The source code is syntactically correct
and .compiles without a single error or warning using gcc version
2.8.1.

int my_func({addr_ptr, ratio)
int *addr_ptr;
float ratio; |

Sample 2-1.
Syntactically
correct K&R

C source code return (*addr_ptr)++;

}
main ()
{

int my_addr;
my_func{my_addr) ;

However, Sample 2-1 suffers from several pathological.ly severe
problems: ‘

1. The my_func function is called with only one argument instead
of two. :
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2. The my_func function is called with an integer value as a first
argument instead of a pointer to an integer,

Problems are As shown in Sample 2-2, the lint program identifies these prob-
found fasterthan  Jems, letting the programmer fix them before executing the pro-
at runtime. gram and observing a catastrophic failure. Diagnosing the problems

at runtime would require a runtime debugger and would take sev-
eral minntes, Compared to the few seconds it took using lint, it is
easy to see that the latter method is more efficient.

src.c{3): warning: argument ratle unused in

Sample 2-2. function my_func
Lintoutput for  gro c(11): warning: addr may be used before set
Sample 2-1 grc.c(12): warning: main() returns random value
to invocation environment
my_func: variable # of args. src.c(4)
src.e(ll)
my_func, arg. 1 used inconsistently
src.c(4) 1 sreo.co{ll)

my_func returns value which is alwavs ignored

Linting tools are Linting tools have a tremendous advantage over other verification

static tools. tools: They do not require stimulus, nor do they require a descrip-
tion of the expected output. They perform checks that are entirely
static, with the expectations built into the linting tool itself.

The Limitations of Linting Tools

Linting teols can ~ Other potential problems were also identified by lint. All were fixed

only identify acer-  in Sample 2-3, but lint continues to report a problem with the invo-

tain class of prob-  caion of the my_finc function: The return value is always ignored.

Jems. Linting tools cannot identify all problems in source code. They can
only find problems that can be statically deduced by looking at the
code structure, not problermns in the algorithm or data flow,

For example, in Sample 2-3, lint does not recognize that the unini-
tialized my_addr variable will be incremented in the my_func func-
tion, producing random results. Linting tools are similar to spell
checkers; they identify misspelled words, but do not determine if
the wrong word is used. For example, this book could have several
instances of the word “with” being used instead of “width”. It is a
type of error the spell checker (or a linting tool) could not find.
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Sample 2-3,

Functionally
correct K&R

C source code

Many false nega-
tives are reported.

~ Carefully filter
error messages!

Naming conven-
tions can help out-
put filtering,

Sample 2-4.

int my_func({addr_ ptr)
int *addr_ptr;

{
return (*addr_ptr) ++;

} .

main ()

{
int my_addr;
my_func (&my_addr) ;
return 0;

}

Another limitation of linting tools is that they are often too paranoid
in reporting problems they identify. To avoid making a Type Il mis-
take—reporting a false positive, they err on the side of caution and
report potential problems where none exist. This results in many
Type 1 mistakes—or false negatives, Designers can become frus-
trated while looking for non-existent problems and may abandon
using linting tools altogether.

You should filter the output of linting tools to climinate warnings or
errors known to be false. Filtering error messages helps reduce the
frustration of looking for non-existent problems. More importantly,
it reduces the output clutter, reducing the probability that the report
of a real problem goes unnoticed among dozens of false reports.
Similarly, errors known to be true positive should be highlighted.
Extreme caution must be exercised when writing such a filter: You
must make sure that a true problem is not filtered out and never
reported.

A properly defined naming convention is a useful tool to help deter-
mine if a warning is significant. For example, the report in Sample
2-4 about a latch being inferred on a signal whose name ends with
“_lat” would be considered as expected and a false warning. All
other instances would be flagged as true errors.

Warning: file decoder.v, line 23: Latch
inferred on reg "address_lat".

I?Htp?ﬁ frlogll 4  Warning: file decoder.v, line 36: Latech
ypothetic inferred on reg "next_state".
Verilog lint-
ing tool
28 Writing Testbenches: Functional Verification of HDL Models
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Do not turn off
checks.

Lint code as it is
being written.

Enforce coding
guidelines.

Filtering the output of a linting tool is preferable to turning off

" checks from within the source code itself or via the command line.

A check may remain turned off for an unexpected duration, poten-
tially hiding real problems. Checks that were thought to be irrele-
vant may become critical as new source files are added.

Because it is better to fix problems when they are created, you
should run lint on the source code while it is being written. If you
wait until a large amount of code is written before linting it, the
large number of reports—many of them false—will be daunting
and create the impression of a setback. The best time to identify a
report as true or false is when you are still intimately familiar with
the code.

The linting process, through the use of user-defined rules, can also

be used to enforce coding guidelines and naming conventions!.

Therefore, it should be an integral part of the authoring process to
make sure your code meets the standards of readability and main-
tainability demanded by your audience.

Linting Verilog Source Code

Linting Verilog
source code
catches common
EITOTS.

Sample 2-5.

Potentially
problematic
Verilog code

Problems may not
be apparent under
most conditions.

Linting Verilog source code ensures that all data is properly han-
dled without accidentally dropping or adding to it. The code in
Sample 2-5 shows a Verilog model that looks perfect, compiles
without errors, but produces unintended results under some circum-
stances in Verilog-95.

module trigtate buffer(in, out, enable);
parameter WIDTH = 8;

input [WIDTH-1:0] in;

cutput [WIDTH-1:0] out;

input enable;

assign out = (enable) ? in : ’'bz;
endmodule
The problem is in the width mismatch in the continuous assignment

between the output “ouf” and the constant “bz”. The unsized con-
stant is 32-bits wide (or a value of 32'hzzzzzzzz), while the output

1. See Appendix A for a set of coding guidelines.
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has a user-specified width. As long as the width of the output is less
than or equal to 32, everything is fine: The value of the constant
will be appropriately truncated to fit the width of the output.

However, in Verilog-95, the problem occurs when the width of the
output is greater than 32 bits: Verilog-95 zero-extends the constant
value to match the width of the output, producing the wrong result.
The least significant 32-bits are set to high-imnpedance, while all the
other more significant bits are set to zero. This “feature” has been
fixed in Verilog-2001,

It is an error that could not be found in simulation, unless a config-
uration greater than 32 bits was used, and it produced wrong results
at a time and place you were looking at. A linting tool finds the
problem every time, in just a few seconds.

Linting VHDL. Source Code

Linting can find

unintended multi-

ple drivers.

Typographical
eITOrS can cause
serious problems.

Because of its strong typing, VHDL does not need linting as much
as Verilog. Much of the checks performed by a linting tool are
required to be performed by the VHDL compiler. However, poten-
tial problems are still best identified using a linting tool.

For example, a common problem in VHDL is created by using the
STD_LOGIC type. Since it is a resolved type, STD_LOGIC signals
can have more than one driver. When modeling hardware, multiple
driver signals are required in a single case: to model buses. In all
other cases (which is over 99% of the time), a signal should have
only one driver. The VHDL source shown in Sample 2-6 demon-
strates how a simple typographical error can go undetected easily
and satisfy the usually paranoid VHDL compiler.

In Sample 2-6, both concurrent signal assignments labeled
“statement]” and “statement2” assign to the signal “s/” (ess-one),
while the signal “sI” {ess-ell) remains unassigned. Had I used the
STD_ULOGIC type instead of the STD_LOGIC type, the VHDL
toolset would have reported an error after finding multiple drivers
on an unresolved signal. However, it is not possible to guarantee the
STD_ULOGIC type is used for all signals with a single driver. A
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————— library ieee;
Sample 2-6. use ieee.std_logic_1164.all;
Erroneous entity my_entity is
m‘_ﬂtlple port (my_input: in std_logic);
drivers end my_entity;
architecture sample of my_entity is
signal si: std_logic:
signal sl: std_logic;
begin
statementl: sl <= my input;
statement2: sl <= not my_input;
end sample;
linting tool is still required to report muitiple driver signals regard-
less of the type, as shown in Sample 2-7.
—————— Warning: file my entity.vhd: Signal 'sl® is
Sample 2-7, multiply driven.
Output froma  warning: file my_entity.vhd: Signal 'sl' has no
hypothehcql drivers.
VHDL linting
tool

Use naming con-
vention to filter
gutput.

Sample 2-8.

" Naming con-
vention for
signals with
multiple
drivers

It would be up to the author to identify the signals that were

intended to model buses and ignore the warnings about them. Using
a naming convention for such signals facilitates recognizing warn-
ings that can be safely ignored, and enhances the reliability of your
code. An example of a naming convention, illustrated in Sample 2-
8, would be to name any signals modeling buses with the “_bus”

suffix?.

-~ data_bus, addr_bus and sys_err_bus

-~ are intended to be multiply driven

signal data_bus : std_logic_wvector(1l5 downto 0);
signal addr_bus : std_logic_vector{ 7 downto 0);
signal ltch_addr: std_logic_wvector( 7 downto 0);
signal sys_err_bus: std_logic;

signal bus_grant std_logic;

2. See Appendix A for an example of naming guidelines.
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Linting can iden-
tify inferred
latches.

The accidental multiple driver problem is not the only one that can
be caught using a linting tool. Others, such as unintended latch
inference in synthesizeable code, or the enforcement of coding
guidelines, can also be identified.

Linting OpenVera and ¢ Source Code

Sample 2-9.

Race condition
on OpenVera
code

Code Reviews

Reviews are per-
formed by peers.

Identify qualitative
problems and
functional errors.

Because of their strong typing, ¢ and OpenVera do not need linting
as much as Verilog. But like Verilog, potential problems are still
best identified using a linting tool. For example, Sample 2-9 shows
a race condition between two concurrent execution branches that
wiil yield an unpredictable result (this race condition is explained in
details jn the section titled “Write/Write Race Conditions” on
page 212). This type of error would be easily detectable by a linting
tool. Linting tools for OpenVera and e are starting to emerge.

integer i;
fork
i
i
join

1;
0;

Although not technically linting tools, the objective of code reviews
is essentially the same: Identify functional and coding style errors
before functional verification and simulation. Linting tools can only
identify questionable language uses. They cannot check if the
intended behavior has been coded. In code reviews, the source code
produced by a designer is reviewed by one or more peers. The goal
is not to publicly ridicule the author, but to identify problems with
the original code that could not be found by an automated tool.
Reviews can identify discrepancies between the design intent and
the implementation. They also provide an opportunity for suggest-

ing coding improvements, such as better comments, better structure
or better organization,

A code review is an excellent venue for evaluating the maintain-
ability of a source file, and the relevance of its comments. Other
qualitative coding style issues can also be identified. If the code is
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Simulators

SIMULATORS

well understood, it is often possible to identify functional errors or
omissions.

Code reviews are not new ideas either. They have been used for
many years in the software design industry. Detailed information on
how to conduct effective code reviews can be found in the
resources section at:

http://janick.bergeron.com/wtb

Simulate your
design before
implementing it.

Simulators are
only approxima-
tions of reality.

Simulators are at
the mercy of the
descriptions being
simulated.

Simulators are the most common and familiar verification tools.
They are named simulators because their role is limited to approxi-
mating reality. A simulation is never the final goal of a project. The
goal of all hardware design projects is to create real physical
designs that can be sold and generate profits. Simulators attempt to
create an artificial universe that mimics the future real design. This
type of verification lets the designers interact with the design before
it is manufactured, and correct flaws and problems earlier.

You must never forget that a simulator is an approximation of real-
ity. Many physical characteristics are simplified—or even
ignored—to ease the simulation task. For example, a four-state dig-
ital simulator assumes that the only possible values for a signal are
0, 1, unknown, and high-impedance. However, in the physical—
and analog—world, the value of a signal is a continuous function of
the voltage and current across a thin aluminium or copper wire
track: an infinite number of possible values. In a discrete simulator,
events that happen deterministically 5 ns apart may be asynchro-
nous in the real world and may occur randomly.

Within that simplified universe, the only thing a simulator does is
execute a description of the design. The description is limited to a
well-defined language with precise semantics. If that description
does not accurately reflect the reality it is trying to model, there is
no way for you to know that you are simulating something that is
different from the design that will be ultimately manufactured.
Functional correctness and accuracy of models is a big problem as
errors cannot be proven nof to exist.
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Stimulus and Response

Simulation
requires stimulus.

The simulation
outputs are vali-
dated externally,
against design
intents.

Simulators are not static tools. A static verification tool performs its
task on a design without any additional information or action
requited by the user. For example, linting tools are static tools. Sim-
ulators, on the other hand, require that you provide a facsimile of
the environment in which the design will find itself. This facsimile
is called a testbench. Writing this testbench is the main objective of
this textbook. The testbench needs to provide a representation of
the inputs observed by the design, so the simulator can emulate the
design’s responses based on its description.

The other thing that you must not forget is that simulators have no
knowledge of your intentions. They cannot determine if a design
being simulated is correct. Correctness is a value judgment on the
outcome of a simulation that must be made by you, the verification
engineer. Once the design is subjected to an approximation of the
inputs from its environment, your primary responsibility is to
examine the outputs produced by the simulation of the design’s
description and determine if that response is appropriate.

Event-Driven Simulation

Simulators are
never fast enough.

Outputs change
only when an input
changes.

Simulators are continuously faced with one intractable problem:
They are never fast enough. They are attempting to emulate a phys-
ical world where electricity travels at the speed of light and millions
of transistors switch over one billion times in a second. Simulators
are implemented using general purpose computers that can execute,
under ideal conditions, up to one billion sequential instructions per
second. The speed advantage is unfairly and forever tipped in favor
of the physical world.

One way to optimize the performance of a simulator is to avoid
stmulating something that does not need to be simulated. Figure 2-1
shows a 2-input XOR gate. In the physical world, if the inputs do
not change (Figure 2-1(a)), even though voltage is constantly
applied to the output, current is continuously flowing through the
transistors (in some technologies), and the atomic particles in the
semiconductor are constantly moving, the interprezation of the out-
put electrical state as a binary value (either a logic 1 or a logic )
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Figure 2-1,
Behavior of an
XOR gate

Change in values,
called events, drive
the simulation pro-
cess.

Sample 2-10.

VHDL model
for an XOR
gate

Sometimes, input
changes do not
cause the output to
change. -

does not change. Only if one of the inputs change (as in Figure 2-
1(b)), does the output change.

0.0 0.1 0..13D »
1..13D - 1..13D . 1.0
(a) (b}

©

Sample 2-10 shows a VHDL description (or m'odel) of an X_OR
gate. The simulator could choose to exsacute T.hlS model coptmu-
ously, producing the same output value if the m;?ut value,s dldrfnot
change. An opportunity to improve upon that s:mulzftor s perfor-
mance becomes obvious: do not execute the model while the inputs
are constants, Phrased another way: Only execu‘te a model when an
input changes. The simulation is therefore driven by changes in
inputs. If you define an input change as an event, you now have an

eveni-driven similator.

XOR_GATE: process (A, B)

begin
if A = B then
Z <= "0';
else
7 <= *'17
end if;

end process XOR_GATE;

But what if both inputs change, as in Figure 2-1(c)? In the log1ca1
world, the output does not change. What should an event-driven
simulator do? For two reasons, the simulator should execute th;
description of the XOR gate. First, in the r.eal worl‘d, the output 00
the XOR gate does change. The output might .osc:lllate between

and 1 or remain in the “neither-0O-nor-17 region for a few hun-
dredths of picoseconds (see Figure 2-2). It just d‘epends on ho;v
accurate you want your model to be. You could dfemde to moc.lel ;c:h e
XOR gate to include the small amount of time spent in the
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Figure 2-2,

Behavior of an
XOR gate
when both
inputs change

Descriptions
between inputs
and outputs are
arbitrary.

Figure 2-3.
Event-driven
simulator view
of an XOR
gate

Acceleration
options are often
available in event-
driven simulators

unknown (or x) state to more accurately reflect what happens when
both inputs change at the same time.

= D L

The second reason is that the event-driven simulator does not know
apriori that it is about to execute a model of an XOR gate. All the
simulator knows is that it is about to execute a description of a 2-
input, 1-output function. Figure 2-3 shows the view of the XOR
gate from the simulator’s perspective: a simple 2-input, 1-output
black box. The black box could Just as easily contain a 2-input
AND gate (in which case the output might very well change if both
inputs change), or a 1024-bit linear feedback shift register (LFSR).

\ ==}

The mechanism of event-driven simulation introduces some limita-
tions and interesting side effects that are discussed further in
Chapter 4.

Simulation vendors are forever locked in a constant battle of beat-
ing the competition with an easier-to-use, faster simniator, It is pOs-
sible to increase the performance of an event-driven simulator by
simplifying some underlying assumptions in the design or in the
simulation algorithm. For example, reducing delay values to identi-
cal unit delays or using two states (0 and 1) instead of four states (0,
1, x and z) are techniques used to speed-up simulation. You should
refer to the documentation of your simulator to see what accelera-
tion options are provided. Tt is also important to understand what
are the consequences, in terms of reduced accuracy, of using these
acceleration options.
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Cycle-Based Simulation
Figure 2-4 shows the event-driven view of a synchronous CirC}]it
composed of a chain of three 2-input gates between two edge-trig-
gered flip-flops. Assuming that Q1 holds a 0, Q2 holdg a1l and all
other inputs remain constant, a rising edge on the clock input would
cause an event-driven simulator to simulate the circuit as follows:

Figure 2-4,
Event-driven
simulator view
ofa
synchronous

circuit Clock_| | [
Ql___ |
S1
52
53
Q] [

1. The event (rising edge) on the clock input causes the execution
of the description of the flip-flop models, changing the output
value of Q1 to | and of Q2 to 0, after a delay of 1 ns.

2. The event on Q1 causes the description of the AND gate to exe-
cute, changing the output S1 to 1, after a delay of 2 ns.

3. The event on S1 causes the description of the OR gate to exe-
cute, changing the ontput S2 to 1, after a delay of 1.5 ns.

4. The event on S2 causes the description of the XOR gate to exe-
cute, changing the output S3 to 1 after a delay of 3 ns.

5. The next rising edge on the clock causes the description of the
flip-flops to execute, Q1 remains unchanged, and Q2 changes
back to 1, after a delay of 1 ns.

To simulate the effect of a single clock cycle on this simple circuit
required the generation of six events and the execution.of seven
models (some models were executed twice). If all we are mtereste'd
in are the final states of Q1 and Q2, not of the intermediate combf—
natorial signals, then the simulation of this circuit could be opti-
mized by acting only on the significant events for Q1 and Q2: the

Many intermedi-
ate events in syn-
chronous circuits
are not function-
ally relevant.
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Cycle-based simu-
lators collapse
combinatorial
logic into equa-
tions.

Figure 2-5.

Cycle-based
simulator view
ofa
synchronous
circuit

active edge of the clock. Phrased another way: Simulation is based
on clock cycles. This is how cycle-based simulators operate.

The synchronous circuit in Figure 2-4 can be simulated in a cycle-
based simulator using the following sequence:

1. When the circuit description is compiled, all combinatorial
functions are collapsed into a single expression that can be used
to determine all flip-flop input values based on the current state
of the fan-in flip-flops.

For example, the combinatorial function between Q1 and Q2
would be compiled from the following initial description:

81 = Q1 & "1’

52 =811 '0°

83 =52 » 0"
into this final single expression:

53 = Q1

The cycle-based simulation view of the compiled circuit is
shown in Figure 2-5.

Clock

2. During simulation, whenever the clock input rises, the value of
all flip-flops are updated using the input value returned by the
pre-compiled combinatorial input functions.

The simulation of the same circuit, using a cycle-based simulator,
required the generation of two events and the execution of a single
medel. The number of logic computations performed is the same in
both cases. They would have been performed whether the “A” input
changed or not. As long as the time required to perform logic com-
putation is smaller than the time required to schedule intermediate

events,” and there are many registers changing state at every clock
cycle, cycle-based simulation will offer greater performance.
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Cycle-based simu-
lations have no
timing inforia-
tion.

Cycle-based simu-
lators can only
handle synchro-
nous circuits.

Co-Simulators

Multple simula-
tors can handle
separate portions
of a simulation.

This great improvement in simulation performance comes at a cost:
All timing and delay information is lost. Cycle-based simulators
assume that the entire design meets the setup and hold requirements
of all the flip-flops. When using a cycle-based simulator, timing is
usnally verified using a static timing analyzer.

Cycle-based simulators further assume that the active clock edge is
the only significant event in changing the state of the design. All
other inputs are assumed to be perfectly synchronous with the
active clock edge. Therefore, cycle-based simulators can only sim-
ulate perfectly synchronous designs. Anything containing asyn-
chronous inputs, latches or multiple-clock domains cannot be
simulated accurately. Fortunately, the same restrictions apply to
static timing analysis. Thus, circuits that are suitable for cycle-
based simulation to verify the functionality are suitable for static
timing verification to verify the timing.

No real-world design and testbench is perfectly suited for a single
simulator, simulation algerithm or modeling language. Different
components in a design may be specified using different languages.
A design could contain small sections that cannot be simulated
using a cycle-based algorithm. Testbenches may (and should) be

. written using an HVL while the design is written in VHDL or Ver-

ilog.

To handle the portions of a design that do not meet the requirements
for cycle-based simulation, most cycle-based simulators are inte-
grated with an event-driven simulator. As shown in Figure 2-6, the
synchronous portion of the design is simulated using the cycle-
based algorithm, while the remainder of the design is simulated
using a conventional event-driven simulator. Both simulators

3. And they are. By a long shot.
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Figure 2-6.

Event-driven
and cycle-
based co-
simulation

Figure 2-7.

HVL and
HDL co-
simulation

All simulators
operate in locked-
step.

Performance is
decreased by the
communication
and synchroniza-
tion overhead.

(event-driven and cycle-based) are running together, cooperating to
simulate the entire design.

Ce— KASYHC Path

Lo Lo

o | I ] ]

Event-Driven
Simuiator

Cycle-Based
Simulator

Other popular co-simuiation environments provide YVHDL and Ver-
ilog, HDL and HVL or digital and analog co-simulation. For exam-
ple, Figure 2-7 shows the testbench (written in ¢) and a design co-
simulated using Specman Elite and a HDL simu]ator.

Testbench (e)

Simulator

Specman
Elite

During co-simulation, all simulators involved progress along the
time axis in lock-step. All are at simulation time T; at the same
time and reach the next time T, at the same time. This implies that
the speed of a co-simulation environment is limited by the slowest
simulator. Some experimental co-simulation environments imple-
ment fime warp synchronization where some simulators are
allowed to move ahead of the others.

The biggest hurdle of co-simulation comes from the communica-
tion overhead between the simulators, Whenever a signal generated
within a simulator is required as an input by another, the current
value of that signal, as well as the timing information of any change
in that value, must be communicated. This communication usually
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Simulators

Translating values
and events from
one simulator to
another can create
ambiguities.

Co-simulation
should not be con-
fused with single-
kernel simulation.

Co-simulator

Figare 2-8.

involves a translation of the event from one simulator into an
(almost) equivalent event in another simulator. Ambiguities can
arise during that translation when each simulation has different
semantics. The difference in semantics is usvally present: the
semantic difference often being the requirement for co-simulation
in the first place.

Examples of translation ambiguities abound. How do you map Ver-
ilog’s 128 possible states (composed of orthogonal logic values and
strengths) into VHDL's nine logic values (where logic values and
strengths are combined)? How do you translate a voltage and cur-
rent value in an analog simulator into a logic value and strength in a
digital simulator? How do you translate an x or z value into a 2-
state e value? How do you translate the timing of zero-delay evenis

from Verilog (which has no strict concept of delta cycles)“ to
VHDL?

Co-simulation is when two (or more) simulators are cooperating to
simulate a design, each simulating a portion of the design, as shown
in Figure 2-8. It should not be confused with simulators able to read
and compile models described in different languages. For example,
Cadence’s NCSIM simulator and Model Technology’s ModelSim
simulator can both simulate a design described using a mix of
VHDL and Verilog. Synopsys’s VCS simulator can simulate Ver-
ilog and a subset of OpenVera. As shown in Figure 2-9, all lan-
guages are compiled into a single internal representation or
machine code and the simulation is performed using a single simu-
lation engine,

VHDL VHDL VHDL

source Compiler Simulator D
Verilog Verilog Verilog

source Compiler Simulator

4. See “The Simulation Cycle” on page 194 for more details on delta
cycles.
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Figure 2.9,

Mixed-
langnage
simulator

VHDL
Compiler

VHDL
source

Intermediate Simulation
object code Engine

Verilog Verilog
source Compiler

VERIFICATION INTELLECTUAL PROPERTY

You can buy IP for

standard functions.

It is cheaper to buy
models than write
them yourself.

Your medel is not
as reliable as the
one you buy,

If you want to verify your design, it is necessary to have models for
all the parts included in a simulation. The model of the RTL design
is a natural by-product of the design exercise and the actual objec-
tive of the simulation. Models for embedded or external RAMs are
also required, as well as models for standard interfaces and off-the-
shelf parts. If you were able to procure the RAM, desi gn IP, specifi-
cation or standard part from a third party, you should be able to
obtain a model for it as well. You may have to obtain the model
from a different vendor than the one who supplies the physical part.

At first glance, buying a simulation model from a third-party pro-
vider may seem expensive. Many have decided to write their own
models to save on licensing costs. However, you have to decide if
this endeavor is truly economically fruitful: Are you in the model-
ing business or in the chip design business? Tf you have a shortage
of qualified engineers, why spend critical resources on writing a
model that does not embody any competitive advantage for your
company? If it was not worth designing on your own in the first
place, why is writing your own maodel suddenly justified?

Secondly, the model you write has never been used before. Its qual-
ity is much lower than a model that has been used by several other
companies before you. The value of a functionally correct and reli-
able model is far greater than an uncertain one. Writing and verify-
ing a model to the same degree of confidence as the third-party
model is always more expensive than licensing it. And be assured:
No matter how simple the model is (such as a quad 2-input NAND
gate, 74L.500), you’ll get it wrong the first time. If not functionally,
then at least with respect to timing or connectivity,

There are several providers of verification IP. Many are written
using an HVL or C code; others are provided as non-synthesizeable
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VHDL or Verilog source code. For intellectual property protection
and licensing technicalities, most are provided as compiled binary
models. Verification IP includes, but is not limited to functional
models of external and embedded memories, bus-functional models
for standard interfaces, protocol generators and analyzers, assertion
sets for standard protocols and black-box models for oft-the-shelf
components and processors.

Hardware Modelers

What if you cannot
find a model to
buy?

You can “plug” a
chip into a simula-
tor.

Figure 2-10.

Interfacing a

hardware

modeler and a
simulator

' ‘Timing of /O sig-

nals still needs to
be modeled.

You may be faced with procuring a model for a device that is S0
new or so complex, that no provider has had time to develop a rel}—
able model for it. For example, at the time the first edition of this
book was written, you could license full-functional models for the
Pentium processor from at least two vendors. However, you could
not find a model for the Pentium III. If you want to verify that your
new PC board, which uses the Iatest Intel microprocessor, is func-
tionally correct before you build it, you have to find some other
way to include a simulation mode! of the processor.

Hardware modelers provide a solution for that situation. A hard-
ware modeler is a small box that connects to your network. A real,
physical chip that needs to be simulated is plugged into it. ]?uring
simulation, the hardware modeler communicates with your simula-
tor {through a special interface package) to supply inputs from the
simulator to the device, then sends the sampled output values from
the device back to the simulation. Figure 2-10 illustrates this com-
munication process.
Moedeler

HDL Simulation
Models Engine
A \

Using a hardware modeler is not a trivial task. Often, an adaptor
board must be built to fit the device onto the socket on the modeler
itself. Also, the modeler cannot perform timing checks on the
device’s inputs nor accurately reflect the output delays. A timing
shell performing those checks and delays must be written to more
accurately model a device using a hardware modeler.

Hardware
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Hardware model-
ers offer better
simulation perfor-
mance.

Hardware modelers are also very useful when simulating a model
of the part at the required level of abstraction. A full-functional
model of a modern processor that can fetch, decode and execute
instructions could not realistically execute more than 10 to 50
instructions within an acceptable time period. The real physical
device can perform the same task in a few milliseconds. Using a
hardware modeler can greatly speed up board- and system-level
simulation.

WAVEFORM VIEWERS

Waveform view-
ers display the

changes in signal
values over time.

Figure 2-11.

Hypothetical
waveform
view of a 4-bit
synchronous
counter

Waveform view-
ers are used to
debug simulations.

Waveform viewers are the most common verification tools used in
conjunction with simulators. They let yon visualize the transitions
of multiple signals over time, and their relationship with other tran-
sitions. With such a tool, you can zoom in and out over particular
time sequences, measure time differences between two transitions,
or display a collection of bits as bit strings, hexadecimal or as sym-
bolic values, Figure 2-11 shows a typical display of a waveform
viewer showing the inputs and outputs of a 4-bit synchronous
counter.

100 110 120 130 140 150
CK_| 1 I I I I
Q[3:0]1 P9 A B B 0
up
RST

Waveform viewers are indispensable during the anthoring phase of
a design or a testbench. With a viewer you can casually inspect that
the behavior of the code is as expected. They are needed to diag-
nose, in an efficient fashion, why and when problems occur in the
design or testbench. They can be used interactively during the sim-
ulation, but more importantly offline, after the simulation has com-
pleted. As shown in Figure 2-12, a waveform viewer can play back

Writing Testbenches: Functional Verification of HDL Models

Waveform Viewers

Figure 2-12.

‘Waveform
viewing as
post-

processing

Recording wave-
form trace data

decreases simula-
tion performance.

Do not use a wave-
form viewer to
determine if a
design passes or
fails.

Some viewers can
compare sets of
waveforms,

How do you define
a set of waveforms
as “golden”?

the events that occurred during the simulation that were recorded in
some trace file.

HDIL Simulation Event Waveform
. Database X
Models Engine File Viewer

Viewing waveforms as a post-processing step lets you quickly
browse through a simulation that can take hours to run. However,
keep in mind that recording trace information significantly reduces
the performance of the simulator. The quantity and scope of the sig-
nals whose transitions are traced, as well as the duration of the
trace, should be limited as much as possible. Of course, you have to
trade-off the cost of tracing a greater quantity or scope of signals
versus the cost of running the simulation over again to get a trace of
additional signals that turn out to be required to completely diag-
nose the problem. If it is likely or known that bugs will be reported,
such as the beginning of the project or during a debugging iteration,
trace ail the signals required to diagnose the problem. If no errors
are expected, such as during regression runs, no signal should be
traced.

In a functional verification environment, using a waveform viewer
to determine the correctness of a design involves interpreting the
dozens (if not hundreds) of wavy lines on a computer screen against
some expectation. It can be an acceptable verification method used
two or three times, for less than a dozen signals. As the number of
signals and transitions increases, so does the number of relation-
ships that must be checked for correctness. Multiply that by the
duration of the simulation. Multiply again by the number of simula-
tion runs. Very soon, the probability that a functional error is
missed reaches one.

Some waveform viewers can compare two sets of waveforms. One
set is presumed to be a golden reference, while the other is verified
for any discrepancy. The comparator visually flags or highlights
any differences found. This approach has two significant problems.

First, how is the golden reference waveform set declared “golden™?
If visual inspection is required, the probability of missing a signifi-
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And are the differ-
ences really signif-
icant?

cant functional error remains equal to one in most cases. The only
time golden waveforms are truly available is in a redesign exercise,
where cycle-accurate backward compatibility must be maintained.
However, there are very few of these designs. Most redesign exer-
cises take advantage of the process to infroduce needed modifica-
tions or enhancements, thus tarnishing the status of the golden
waveforms.

Second, waveforms are at the wrong level of abstraction to compare
simulation results against design intent. Differences from the
golden waveforms may not be significant. The value of all output
signals is not significant all the time. Sometimes, what is sighificant
is the relative relationships between the transitions, not their abso-
lute position. The new waveforms may be simply shifted by a few
clock cycles compared to the reference waveforms, but remain
functionally correct. Yet, the comparator identifies this situation as
a mismatch.

CODE COVERAGE

Did you forget to
verify some func-
tion in your code?

Code must first be
instrumented.

Code coverage is a tool that can identify what code has been (and
more importantly not been) executed in the design under verifica-
tion. It is a methodology that has been in use in software engineer-
ing for quite some time. The problem with false positive answers
{i.e., a bad design is thought to be good), is that they look identical
to a true positive answer. It is impossible to know, with 100 percent
certainty, that the design being verified is indeed functionally cor-
rect. All of your testbenches simulate successfully, but are there
sections of the RTL code that you did not exercise and therefore not
triggered a functional error? That is the question that code coverage
can help answer.

Figure 2-13 shows how a code coverage tool works. The source
code is first instrumented. The instrumentation process simply adds
checkpoints at strategic locations of the source code to record
whether a particular construct has been exercised. The instrumenta-
tion method varies from tool to tool. Some may use file I/O features
available in the language (i.e., use $write statements in Verilog or
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Code Coverage

Figure 2-13.

Codecoverage
process

No need to instru-
ment the test-
benches.

Trace information
is collected at runt-
ime.

Statement and
block coverage are
the same thing.

textio.write procedure calls in VHDL). Others may use special fea-
tures built into the simulator.

- Instrumented Testbenches
Original
G
Simulation
Engine
Y
Coverage Report
Metrics ( Generator

Metrics

Database
Only the code for the design under verification is instrumented. The
objective is to determine if you have forgotten to exercise some
code in the design. The code for the testbenches need not be traced
to confirm that it has executed. If a significant section of a test-
bench was not executed, it should be reflected in some portion of
the design not being exercised. Furthermore, a significant portion

of the testbench code is executed only if an error is detected. Code
coverage metrics on testbench code are therefore of little interest.

The instrumented code is then simulated normally using all avail-
able, uninstrumented, testbenches. The cumulative traces from all
simulations are collected into a database. From that database,
reports can be generated to measure various coverage metrics of the
verification suite on the design.

The most popular metrics are statement, path and expression cover-
age. Statement coverage can also be called block coverage, where a
block is a sequence of staterments that are executed if a single state-
ment is executed. The code in Sample 2-11 shows an example of a
statement block. The block named acked is executed entirely when-
ever the expression in the if statement evaluates to TRUE. So
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counting the execution of that block is equivalent to counting the
execution of the four individual statements within that block.

—— . i1f (dtack == 1'bl in:
Sample 2-11. ;S <= 1'b0 ) begin: acked
Block vs. data <= 16'hz22%;
statement exe- bus_rq <= 1'b0;
cution state <= IDLE;
end
But block bound- Statement blocks may not be necessarily clearly delimited. In Sam-
Z]fl"zs ll'zf)la'y not be ple 2-12, two statements blocks are found: one before (and includ-
at obvious. ing) the wait statement, and one after. The wait statement may have
never completed and the process was waiting forever. The subse-
quent sequential statements may not have executed. Thus, they
form a separate statement block.
.. address <= l6#FFED#;
Sample 2-12. 1o oo
Blocks sepa- rw <z 7115
rated by awail  yait until dtack = ‘1¢;
Statement read_data := data;
ale <= '0';
Statement Coverage

Did you execute
all the statements?

Statement, line or block coverage measures how much of the total
lines of code were executed by the verification suite. A graphical
user interface usually lets the user browse the source code and
quickly identify the statements that were not executed. Figure 2-14
shows, in a graphical fashion, a statement coverage report for a
small portion of code from a model of a modem. The actual form of
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Code Coverage

Figure 2-14.

Example of
statement
coverage

Why did you not
execute all state-
ments?

It is normal for
some statements
not to be executed.

the report from any code coverage tool or source code browser will
likely be different.

gif (parity == ODD !| parity == EVEN} begin
0 tx <= compute_parity(data, parity);
| #{tx_time);
erid
®ix <= 1'b0;
# (tx_time) ;

1if (stop_bits == 2) begin
tx <= 1'b0;
g #{tx_time);
end

The example in Figure 2-14 shows that two out of the eight execut-
able statements—or 25%—were not executed. To bring the state-

ment coverage metric up to 100%, a desirable goal5 , it is necessary
to understand what conditions are required to cause the execution
of the uncovered statements. In this case, the parity must be set to
either ODD or EVEN. Once the conditions have been determined,
you must understand why they never occurred in the first place. Is it
a condition that can never occur? Is it a condition that should have
been verified by the existing verification suite? Or is it a condition
that was forgotten?

If it is a condition that can never occur, the code in question is
effectively dead: It will never be executed. Removing that code is a
definite option; it reduces clutter and increases the maintainability
of the source code. However, a good defensive (and paranoid)
coder often includes code that is not meant to be executed. This
additional code simply monitors for conditions that should never
occur and reports that an unexpected condition happened should the
hypothesis prove false. This practice is very effective (see “Asser-
tions” on page 64). Functional problems are positively identified
near the source of the malfunction, without having to rely on the

5. But not necessarily achievable. For example, the defaul: clause in a
fully specified VHDL case statement should never be executed.
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Samptle 2-13.
Defensive pro-

gramming
technique

Your model can
tell you if things
are not as
assumned.

Do not measure
coverage for code
not meant to be
executed.

Add testcases to
execute all state-
ments.

possibility that it produces an unexpected response at the right
moment when you were looking for something else.

case (model[1:01)
2°b00:

2'010:

2'bh01:

// synopsys translate_off

// coverage off

default: Swrite("Case was not really full!\n");
// coverage on

// syncpsys translate_on

endcase

// synopsys full_case

Sample 2-13 shows an example of defensive modeling in synthe-
sizeable case statements. Even though there is a directive instruct-
ing the synthesis tool that the case statement describes all possible
conditions, it is possible for an unexpected condition to occur dur-
ing simulation, If that were the case, the simulation results would
differ from the results produced by the hardware implementation,
and that difference would go undetected until a gate-level simula-
tion is performed, or the device failed in the system.

It should be possible to identify code that was not meant to be exe-
cuted and have it eliminated from the code coverage statistics. In
Sample 2-13, significant comments are used to remove the defen-
sive coding statements from being measured by our hypothetical
code coverage tool. Some code coverage tools may be configured
to ignore any statement found between synthesis translation on/off
directives. It may be more interesting to configure a code coverage
tool to ensure that code included between synthesis translate on/off
directives is indeed not executed!

If the conditions that would cause the uncovered statements to be
executed should have been verified, it is an indication that one or
more testbenches are either not functionally correct or incomplete.
If the condition was entirely forgotten, it is necessary to add to an
existing testbench, create an entirely new one or make additional
runs with different seeds.
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Code Coverage

Path Coverage

There is more than
one way to execute
a sequence of
statements.

Sample 2-14.

Example of
statement and
path coverage

‘Why were some
sequences not exe-
cuted?

Limit the length of
statement
sequences,

Path coverage measures all possible ways you can execute a
sequence of statements. The code in Sample 2-14 has four possible
paths: the first if statement can be either true or false. So can the
second. To verify all paths through this simple code section, it is
necessary to execute it with all possible state combinations for both
if statements: false-false, false-true, true-false, and true-true.

gii parit}y == oDI] || parity == EVEN) begin
g( Fx <= compute]l paritly (data, parity):
g{ F{tx_time);

glj gtop__bits == |2} begin

The current verification suite, although it offers 100% statement
coverage, only offers 75% path coverage through this small code
section. Again, it is necessary to determine the conditions that
cause the uncovered path to be executed. In this case, a testcase
must set the parity to neither ODD nor EVEN and the number of
stop bits to two. Again, the important question one must ask is
whether this is a condition that will ever happen, or if it is a condi-
tion that was overlooked.

The number of paths in a sequence of statements grows exponen-
tially with the number of control-flow statements. Code coverage
tools give up measuring path coverage if their number is too large
in a given code sequence. To avoid this situation, keep all sequen- .
tial code constructs (in Verilog: always and iritial blocks, tasks and
functions; in VHDL: processes, procedures and functions} to under
100 lines.

Reaching 100% path coverage is very difficult.
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Expression Coverage

There may be
more than one
cause for a con-
trol-flow change.

Sample 2-15,

Example of
statement and
expression
coverage

¥FSM Coverage

Statement cover-
age detects unvis-
ited states.

FSM coverage
identifies state
transitions.

If you look closely at the code in Sample 2-15, you notice that there
are two mutually independent conditions that can cause the first if
statement to branch the execution into its then clause: parity being
set to either ODD or EVEN. Expression coverage, as shown in
Sample 2-15, measures the various ways paths through the code are
executed. Even if the statement coverage is at 100%, the expression
coverage is only at 50%,

gié l’L === i == ) begin

1!( £X <= computj_parity(data, parity);

g( [t timey ;
end

gtx k= 1'bG;

# [tk _time);

stop_bits == 2) begin

Fx <= 1'b0;

i (tx_time);

Once more, it 1s necessary to understand why a controlling term of
an expression has not been exercised. In this case, no testbench sets
the parity to EVEN. Is it a condition that will never occur? Or was it
another oversight?

Reaching 100% expression coverage is extremely difficult.

Because each state in an FSM is usually explicitly coded using a
choice in a case statement, any unvisited state will be clearly identi-
fiable through uncovered statements, The state corresponding to an
uncovered case statement choice was not visited during verifica-
tion.

Figure 2-15 shows a bubble diagram for an FSM. Although is has
only five states, it has significantly more possible transitions: 14
possible transitions exist between adjoining states. State coverage
of 100% can be easily reached through the sequence Reset, A, B, D,
then C. However, this would yield only 36% transition coverage. To
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A

Code Coverage

Figure 2-15.
Example I'SM

bubble
diagram

‘What about
unspecified states?

completely verify the implementation of this FSM, it is necessary to
ensure the design operates according to expectation for all transi-
tions.

Any State A
l / °

Reset @ \ l
®

C

The FSM illustrated in Figure 2-15 only shows five specified states.
Once synthesized into hardware, a 3-bit state register will be neces-
sary (maybe more if a different state encoding scheme, such as one-
hot, is used). This leaves three possible state values that were not
specified. What if some cosmic rays zap the design into one of
these unspecified states? Will the comectness of the design be
affected? Logic optimization may yield decode logic that creates an
island of transitions within those three unspecified states, never let-
ting the design recover into specified behavior unless reset is
applied. The issues of design safety and reliability and techniques
for ensuring them are beyond the scope of this book. But it is the
role of a verification engineer to ask those questions.

«—>
«—>

@+ @7

What Does 100% Code Coverage Mean?

Completeness The short answer is: Everything you wrote was executed. Code
does not imply coverage indicates how thoroughly your entire verification suite
correciness. exercises the source code. But it does not provide an indication, in
any way, about the correctness or completeness of the verification
suite. Figure 2-16 shows the reconvergence model for automati-
cally extracted code coverage metrics. It clearly shows that it does
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Figure 2-16.
Reconvergent

paths in
automated

code coverage

Code coverage lets
you know if you
are not done.

Code coverage
tools can be used
as profilers.

not help verify design intent, only that the RTL code, correct or not,
was fully exercised.

Code Coverage

Specifi- RTL
cation ® coding ®
Simulation

Results from code coverage tools should be interpreted with a grain
of salt. They should be used to help identify comner cases that were
not exercised by the verification suite or implementation-dependent
features that were introduced during the implementation. You
should also determine if the wncovered cases are relevant and

deserve additional attention, or a consequence of the mindlessness
of the coverage tool.

Code coverage indicates if the verification task is not complete
through low coverage numbers. A high coverage number is by no
means an indication that the job is over. Code coverage is an addi-
tional indicator for the completeness of the verification job. It can
help increase your confidence that the verification job is complete,
but it shouid not be your only indicator.

When developing models for simulation only, where performance
is an important criteria, code coverage tools can be used for profil-
ing. The aim of profiling is the opposite of code coverage. The aim
of profiling is to identify the lines of codes that are executed most
often. These lines of code become the primary candidates for per-
formance optimization efforts,
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Functional Coverage

FUNCTIONAL COVERAGE

Did you forget to
verify some condi-
tion?

It complements
code coverage.

It will detect errors
of omission.

Sample 2-16.

Example of
coding error
undetectable

by code cover-

Functional coverage is another tool to help ensure that a bad design
is not hiding behind passing testbenches. Although this methodol-
ogy has been in use at some companies for quite some time, it is a
recent addition to the arsenal of general-purpose verification tools.
Functional coverage records relevant metrics (e.g., packet length,
instruction opcode, buffer occupancy level) to ensure that the veri-
fication process has exercised the design through all of the interest-
ing values. Whereas code coverage measures how much of the
implementation has been exercised, functional coverage measures
how much of the original design specification has been exercised.

High functional coverage does not necessarily correlate with high
code coverage. Whereas code coverage is concerned with recording
the mechanics of code execution, functional coverage is concerned
with the intent or purpose of the implemented function. For exam-
ple, the decoding of a CPU instruction may involve separate case
statements for each field in the opcode. Each case statement may be
100% code-covered due to combinations of field values from previ-
ously decoded opcodes. However, the particular combination
involved in decoding a specific CPU instruction may not have been
exercised.

Sample 2-16 shows a case statement decoding a CPU instruction.
Notice how the decoding of the RTS instruction is missing. If [
relied solely on code coverage, I would be lulled in a false sense of
completeness by having 100% coverage of this code. For code cov-
erage to report a gap, the unexescised code must a priori exist.
Functional coverage does not rely on actual code. It will report gaps
in the recorded values whether the code to process them is there or
not.

type OPCCDE_TYP is [ADD, SUB, JMP, RTS, NOPJ;

case {OPCODE) is
when ADD => ...
when SUB =>

age when JMP => ...
when others =
end case;
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It must be manu-
ally defined.

Metrics are col-
iected at runtime
and graded.

Coverage data can

be used at runtime.

Code coverage tools were quickly adopted into verification pro-
cesses because of their low adoption cost. They require very little
additional action from the user: At most, execute one more com-
mand before compiling your code. Functional coverage, because it
is a measure of values deemed to be interesting and relevant, must
be manually specified. Since relevance and interest are qualities
that are extracted from the intent of the design, functional coverage
is not something that can be automatically extracted from the RTL
source code. Your functional coverage metrics will be only as good
as what you implement.

Like code coverage, functional coverage metrics are collected at
runtime, during a simulation run, The values from individual runs
are collected into a database or separate files. The functional cover-
age metrics from these separate runs are then merged for offline
analysis. The marginal coverage of individual runs can then be
graded to identify which runs contributed the most toward the over-
all functional coverage goal. These runs are then given preference

in the regression suite, while pruning runs that did not significantly

contribute to the objective.

Functional coverage tools usually provide a set of runtime proce-
dures that iet a testbench dynamically query a particular functional
coverage metric. The testbench can then use the information to
modify its current behavior. For example, it could increase the
probability of generating values that have not been covered yet. Tt
could decide to abort the simulation should the functional coverage
not have significantly increased since the last query.

Although touted as a powerful mechanism by vendors, it is no sil-
ver bullet. Implementing the dynamic feedback mechanism is not
easy: You have to correlate your stimulus generation process with
the functional coverage metric, and ensure that one will cause the
other to converge toward the goal. Dynamic feedback works best
when there is a direct correlation between the input and the mea-
sured coverage, such as instruction types. It may be more efficient
to achieve your goal with three or four runs of a simpler testbench
without dynamic feedback than with a single run of a auch more
complex testbench.
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Functional Coverage

Item Coverage

Did I generate all
interesting and rel-
evant values?

Define what to
sample.

Define where to
sample it. '

Define when to

Item coverage is the recording of individual scalar values. 1t is a
basic function of all functional coverage tools. The objective of the
coverage metric is to ensure that all interesting and relevant values
have been observed going to, coming out of, or in the design.
Examples of item coverage include, but are not limited to, packet
length, instruction opcode, interrupt level, bus transaction termina-
tion status, buffer occupancy level, bus request patterns and so on.

It is extremely easy to record functional coverage and be inundated
with vast amounts of coverage data. But data is not the same thing
as information. You must restrict coverage to only (but all!) values
that will indicate how thoroughly your design has been verified. For
example, measuring the value of the read and write pointers in a
FIFO is fine if you are concerned about the full utilization of the
buffer space and wrapping around of the pointer values. But if you
are interested in the FIFO occupancy level (Was it ever empty? Was
it ever full? Did it overflow?), you should measure and record the
difference between the pointer values.

Next, you must decide where in your testbench or design is the
measured value accurate and relevant. For example, you can sam-
ple the opcodé of an instruction at several places: at the output of
the code generator, at the interface of the program memory, in the
decoder register or in the execution pipeline. You have to ensure
that a value, once recorded, is indeed processed or committed as
implied by the coverage metric.

For example, if you are measuring opcodes that were executed,

- they should be sampled in the execution unit. Sampling them in the

decode unit could result in false samples when the decode pipeline
is flushed on branches or exceptions. Similarly, sampling the length
of packets at the output of the generator may yield false samples: If
a packet is corrupted by injecting an error during its transmission to
the design in lower-level functions of the testbench, it may be
dropped.

Values are sampled at some point in time during the simulation. It

sample it, could be at every clock cycle, whenever the address strobe signal is
asserted, every time a request is made or after randomly generating
a new value. You must carefully chose your sampling time. Over-
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Define why we
cover it.

It can detect
invalid values.

It can report holes.

sampling will decrease simulation performance and consume data-
base resources without contributing additional information.

The sampled data must also be stable so race conditions must be
avoided between the sampled data and the sampling event (see
“Read/Write Race Conditions” on page 209). To reduce the proba-
bility that a transient value is being sampled, functional coverage
tools may delay the sampling of values to the end of their simula-
tiont cycle, before time is about to advance (see “The Simulation
Cycle” on page 194 and “The Co-Simulation Cycle” on page 196).

High-level testbench functions usually operate on different values
in zero-time within the same simulation cycle. If the functional cov-
erage tool delays its sampling to the end of the simulation cycle, it
will not be possible to sample all of the intermediate values. Only
th¢ last value will be recorded, resulting in under-sampling.

If functional coverage is supposed to measure interesting and rele-
vant values, it is necessary to define what makes those values so
interesting and relevant. For example, measuring the functional
coverage of a 32-bit address will yield over 4 billion “interesting
and relevant” values, Not all values are created equal—but most
are. Values may be numerically different but functionally equiva-
lent, By identifying those functionally equivalent values into a sin-
gle set, you can reduce the number of interesting and relevant
values to a more manageable size. For example, based on the
decoder architecture, addresses 0x00000001 through 0x7FFEFFFR
and addresses 0x80000000 through Ox8FFFFFFE are functionally
equivalent, reducing the number of relevant and interesting values
to 4 sets (min, 1 to mid, mid to max-1, max),

If you can define sets of equivalent values, it is possible to define
sets of invalid or unexpected values. Functional coverage can be
used as an error detecting tool, just like an if statement in your test-
bench code. However, you should not rely on functional coverage
to detect invalid values. Functional coverage is an optional runtime
tool that may not be turned on at all times. If functional coverage is
not enabled to improve simulation performance and if a value is
defined as invalid in only the functional coverage, then an invalid
value may go undetected.

The ultimate purpose of functional coverage is to identify what
remains to be done. During analysis, the functional coverage tool
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Functional Coverage

Cross Coverage

Did I generate all
interesting combi-
nation of values?

Similar to item
coverage.

Can be done in
post-processing
step.

can compare the number of value sets that contain at least one sam-
ple against the total number of value sets. Any value set that does
not contain at least one sample is a hole in your functional cover-
age. By enumerating the empty value sets, you can focus on the
holes in your test cases and complete your verification sooner
rather than continue to exercise functionality that has already been
verified.

For this enurneration to be possible, the total number of value sets
must be relatively small. For example, it is practically impossible to
fill the coverage for a 32-bit value without broad value sets. The
number of holes will be likely in the millions, making enumeration
impossible. You should strive to limit the number of possible value
sets as much as possible. For example, Specman Elite has a default
limit of 16 value sets for hole enumeration.

Whereas item coverage is concerned with individual scalar values,
cross coverage measures the presence or occurrence of combina-
tions of values. It helps answer questions like, “Did I inject a cox-
rupted packet on all ports?” “Did we execute all combinations of
opcodes and operand modes?” and “Did this state machine visit
each state while that buffer was full, not empty and empty?” Cross
coverage can involve more than two scalar items. However, the
number of possible value sets grows factorially with the number of
crossed items.

Mechanically, cross coverage is identical to item coverage. Specific
values are sampled at specific locations at specific points in time
with specific value sets. The only difference is that two or more val-
ues are sampled instead of one.

It may be possible to perform offline cross coverage by post-pro-
cessing the item coverage metrics. In some tools, it is the only cross
coverage mechanism available. To enable offline cross-coverage
analysis, it is necessary to sample the simulation time along with
each individual value sample. The recording of additional informa-
tion such as simulation time increases the size of the coverage data
and reduces runtime performance. Most tools make gathering addi-
tional cross coverage information optional, and this feature is usu-
ally turned off by default. As shown in Sample 2-17, the cross
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coverage report is generated by identifying the values that were
sampled at the same simulation time.

Sample 2-17.

EXﬂIE"lple cl); E:ﬁkiﬁ Packgt Length x Valid

offline cross-  _____ ? _____ valid

;gi\;erage anal- short €10 goodelo ;r;;cnlﬂ “bad
long_; @20 bad @20 short X
medium@30 good@30 »medium X

long X

gfifgl;nree;?rst:-liv- As }ong as each item value is sampled at different points in time

1okl face sam. Y offline cross-coverage analysis works fine. When recording values,

s, located inside an RTL design or a bus-functional model sampled at
clock edges, there can be only one value per simulation time. How-
ever, co‘ven'ng values in higher-level testbench functions, which
operate_ in zero-time, may result in multiple values sample’d at the
same simulation time. Sample 2-18 shows the same item coverage
as befqre, but sampled when all of the packets were generated at the
same time. This approach yields an incorrect offline cross-coverage
report, The same cross-coverage measure, if collected at runtime
would yield a correct report. ,

Sample 2-18.

racket Packet L id
Example of Length Valid ength x Valid
invalid offline =~ _____T_____ __

CrOSS-COVEr-  short €10 aoedaln LTI
. short €10 goodglo
age analysis long 810 bad @10 short go}?:d b;d
medium@l0 good@l0 medium X X
long X X

Transition Coverage
gﬁrisggﬁzme all  Whereas cross coverage is concerned with combination scalar val-
emencoof val ues at the same point in time, transition coverage measures the pres-
ee? ence or occurrence of sequences of values. Transition coverage
heips answer questions like, “Did I perform all combinations of
}:.oack-to-back read and write cycles?” “Did we execute all combina-
tions of arithmetic opcodes followed by test opcodes?” and “Did
this state machine traverse all significant paths?” Transition cover-
age can involve more than two consecutive values of the same sca-
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Functional Coverage

Similar to item
coverage.

Similar to FSM
path coverage.

Transition cover-
age reflects intent.

lar item. However, the number of possible value sets grows
factorially with the number of transition states.

Mechanically, transition coverage is identical to item coverage.
Specific values are sampled at specific locations at specific points
in time with specific value sets. The only difference is that a sample
is said to have occurred in a value set after two or more consecutive
item samples instead of one. The other difference is that transition
can overlap, hence two transition samples may be composed of the
same itern sample.

Conceptually, transition coverage is identical to FSM path coverage
(see “FSM Coverage” on page 52). Both record the consecutive
values at a particular location of the design (for example, a state
register), and both compare against the possible set of paths. But
unlike FSM coverage tools, which are limited to state registers in
RTL code, transition coverage can be applied to any sampled value
in testbenches and behavioral models.

Becanse transition coverage is (today) manually specified from the
intent of the design or the implementation, it provides a true inde-
pendent path to verifying the correctness of the design and the com-
pleteness of the verification. It can detect invalid transitions as well
as specify transitions that may be missing from the implementation
of the design.

What Does 100% Functional Coverage Mean?

It indicates com-
pleteness, not cor-
rectness.

Functional coverage indicates which interesting and relevant condi-
tions were verified, It provides an indication of the thoroughness of
the implementation of the verification plan. Unless some value sets
are defined as invalid, it cannot provide an indication, in any way,
about the correctness of those conditions or of the design’s
response to those conditions. Functional coverage metrics are only
as good as the functional coverage model you have defined. Cover-
age of 100% means that you’ve covered all of the coverage points
you included in the simulation. It makes no statement about the
completeness of your functional coverage model.

Results from functional coverage tools should also be interpreied
with a grain of salt. Since they are generated by additional test-
bench code, they have to be debugged and verified for correctness
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If & metric is not
interesting, don't
measure it.

Functional cover-
age lets you know
if you are done.

before being trusted. They will help identify additional interesting
conditions that were not included in the verification plan.

It is extremely easy to define functional coverage metrics and gen-
erate many reports. If coverage is not measured according to a spe-
cific purpose, you will soon drown under megabytes of functional
coverage reports. And few of them will ever be close to 100%. It
will also become impossible to determine which repoit is signifi-
cant or what is the significance of the holes in others. The verifica-
tion plan (see the next chapter) should serve as the functional
specification for the coverage models, as well as for the rest of the
verification environment. If a report is not interesting or meaningful
to look at, if you are not eager to look at a report after a simulation
run, then you should question its existence.

When used properly, functional coverage becomes a formal specifi-
cation of the verification plan. Once you reach 100% functional
coverage, it indicates that you have created and exercised all of the
relevant and interesting conditions you originally identified. It con-
tirms that you have implemented everything in the verification
plan. However, it does not provide any indication of the complete-
ness of the verification plan itself or the correctness of the design
under such conditions.

VERIFICATION LANGUAGES

VHDL. and Verilog
are simulation lan-
guages, not verifi-
cation languages.

Verification lan-
guages can raise
the level of
abstraction.

Verilog was designed with a focus on describing low-level hard-
ware structures. Verilog-2001 only recently introduced support for
basic high-level data structures. VHDL was designed for very large
design teams. It strongly encapsulates all information and commu-
nicates strictly through well-defined interfaces. Very often, these
limitations get in the way of an efficient implementation of a verifi-
cation strategy. VHDL and Verilog also lack features important in
efficiently implementing a modern verification process.

As mentioned in Chapter 1, one way to increase productivity is to
raise the level of abstraction used to perform a task. High-level lan-
guages, such as C or Pascal, raised the level of abstraction from
assembly-level, enabling software engineers to become more pro-
ductive. Similarly, computer languages specifically designed for
verification are able to raise the level of abstraction compared to
general-purpose simulation languages. Hardware verification lan-
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Verification Languages

Verification lan-
guage can auto-
mate verification.

HVL
productivity
cycle

Several verifica-
tion languages
exist.

Figure 2-17.

guages maintain important concepts necessary to interact with
hardware: time, concurrency and instantiation, They also offer fea-
tures that help raise the level of abstraction: complex data types,

object-orientedness with inheritance and temporal assertions.

If the main benefit of a hardware verification language was the
higher level of abstraction and object-orientedness, then C++

would have long been identified as the best solution?: It .is free and
widely known, The main benefit of HVLs, as showr} in F1 gure 2-17,
is their capability of automating a portion of_the verification by‘ ran-
domly generating stimulus, collecting furllctlonal‘coverage to iden-
tify holes then the ability to add constraints easily to create more
stimulus targeted to fill those holes. To support this prpductlvuy
cycle, some HVLs offer constrainable randorr} generatlop, func-
tional coverage measurement and a code extension mechanism.

Functional ‘
Multiple runs, Coverage jﬁ;{ﬁe,}wﬁ,
Multiple seeds oles
G%Egg;&gn Constraints

Minimal code
modifications

At the time of this writing, commercial verification language solu-
tions include e from Verisity, OpenVera from Sy.nopsys and .RAVE
from Forte. Open-source or public-domain solutions are available:

the SystemC Verification Library7 from Cfldence :ilnd Jeda from
Juniper Networks. Accelera is working on introducing HVL func-
tionality in SystemVerilog. There is also a plethora of home-grown
proprietary solutions based on C++, Perl or TCL.

The definition of what makes a language an HVL is still nebulous.
Of the languages mentioned, most do not include all of the fegtures
identified in the productivity cycle. The large number of \fenﬁca-
tion language solutions confirms that the industry recognizes the

6. C-++ still lacks a native concept of time, concurrency and instantiation.

7. Formerly known as TestBuilder.
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You must learn the
basics of verifica-
tion before learn-
ing verification
languages.

Coverage-driven
constrained ran-
dom approach
requires HVLs,

ASSERTIONS

Iimitatior%s of Verilog and VHDL for verification. It is also a classic
characteristic of a young market, before coalescing around one or
two market leaders and de-facto standards,

In this book, I use VHDL and Verilog as the first implementation
medium for the basic components of the verification infrastructure
and to introduce the concept of self-checking transaction-level
directed testbenches. Even though HVLs make implementing such
testbenches easier (especially the self-checking part), you still need
Fo plan your verification, define your verification objectives, design
1ts strategy and architecture, design the stimulus, determine the
expected response and compare the actual output, These are con-
cepts that can be learned and applied using VHDL or Verilog.

AIl HVLs can be used as if they were souped-up Verilog or VHDL
languages. In fact, most HVL solutions are just that. But if your
HVL contains all of the features required to support the HVL pro-
ductivity cycle, the verification process must be approached—and
implemented—in a different fashion,

This change is just like taking advantage of the productivity offered
by logic synthesis tools: It requires an approach different from
schematic capture. To successfully implement a coverage-driven
constrained random verification approach, you need to modify the
way you plan your verification, design its strategy and implement
the testcases. Because Verilog and VHDL lack all of the required
features, ¢ and OpenVera will be used to illustrate these concepts.

Assertions detect
conditions that
should always be
true,

An assertion boils down to an if statement and an error message
should the expression in the if statement become false. Assertions
have been used in software design for many years: the assert()
function has been part of the ANSI C standard from the beginning.
In software for example, assertions are used to detect conditions
such as NULL pointers or empty lists. VHDL has had an assert
statement from day one too, but it was never a popular construct—
except to terminate a simulation (see Sample 5-44 on page 264 for
an example).
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Assertions

Hardware asser-
tions require a
form of temporal
language.

There are two
classes of asser-
tions.

Implementation
assertions verify
assumptions.

Specification
assertions verify
intent.

A software assertion simply checks that, at the time the assert state-
ment is executed, the condition evaluates to TRUE. This simple
zero-time test is not sufficient for supporting assertions in hardware
designs. In hardware, functional correctness usually involves
behavior over a period of time. Some hardware assertions such as,
“This state register is one-hot encoded.” or “This FIFO never over-
flows.” can be expressed as immediate, zero-time expressions. But
checking simple hardware assertions such as, “This signal must be
asserted for a single clock period.” or “A request must always be
followed by a grant or abort within 10 clock cycles.” require that
the assertion condition be evaluated over time. Thus, assertions
require the use of a temporal language to be able to describe rela-
tionships over time.

Assertions fall in two broad classes: those specified by the designer
and those specified by the verification engineer.

« Tmplementation assertions are specified by the designers.

s Specification assertions are specified by the verification engi-
neers.

Implementation assertions are used to formally encode the
designer’s assumptions about the interface of the design or condi-
tions that are indications of misuse or design faults. For example,
the designer of a FIFO would add assertions to detect if it ever
overflows or underflows or that, because of a design limitation, the
write and read pulses are ever asserted at the same time. Because
implementation assertions are specified by the designer, they will
not detect discrepancies between the functional intent and the
design. But implementation assertions will detect discrepancies
between the design assumptions and the implementation.

Specification assertions formally encode expectations of the design
based on the functional intent. These assertions are used as a func-
tional error detection mechanism and supplement the error detec-
tions performed in the self-checking section of testbenches.
Specification assertions are typically white-box strategies because
the relationships between the primary inputs and outputs of a mod-
ern design are too complex to be described in today’s temporal lan-
guages. For example, rather than relying on the scoreboard to detect
that an arbiter is not fair, it is much simpler to perform this check
using a block-level assertion.
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Assertion specifi-
cation is a com-
plex topic.

This simple introduction to assertions does not do justice to the
richness and power—and ensuing complexity—of assertion. Entire
books ought to be (and probably are being) written about the sub-
ject.

Simulation Assertions

The OVL started
the storm.

They detect errors
close in space and
time to the fault.

Assertions took the hardware design community by storm when

Foster and Bening’s book® introduced the concept using a library of
predefined Verilog modules that implemented all of the common
design assertions. The library, available in source form as the Open

Verification Library,” was a clever way of using Verilog to specify
temporal expressions. Foster, then at Hewlett-Packard, had a hidden
agenda: Get designers to specify design assertions he could then try
to prove using formal methods. Using Verilog modules was a con-
venient solufion to ease the adoption of these assertions by tle
designers. The reality of what happened next proved to be even
more fruitful.

If a design assumption is violated during simulation, the desi gn will
not operate correctly. The cause of the violation is not important: It
could be a misunderstanding by the designer of the block or the
designer of the upstream block or an incorrect testbench. The rele-
vant fact is that the design is failing to operate according to the
original intent. The symptoms of that low-level failure are usually
not visible (if at all) until the affected data item makes its way to the
outputs of the design and is flagged by the self-checking structure.

An assertion formally encoding the design assumption immediately
fires and reports a problem at the time it occurs, in the area of the
design where it occurs. Debugging and fixing the assertion failure
(whatever the cause) will be a lot more efficient than tracing back
the cause of a corrupted packet. In one of Foster’s projects, 85% of
the design errors where caught and quickly fixed using simulated
assertions,

8. Hatry Foster and Lionel Bening, “Principles of Verifiable RTL Design,”
second edition, Kluwer Academic Publisher, ISBN 0-7923-7368-5.

9. Seehttp://verificationlib.org.
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Assertions

Formal Assertion Proving

Is it possible for an
assertion to fire?

Model checking
can mathemati-
cally prove or dis-
prove an assertion.

Some assertions
are used as
assumptions.

Assumptions need
to be proven too.

Semi-formal tools
combine model
checking with sim-
ulation.

Simulation can show only the presence of bugs, never prove their
absence. The fact that an assertion has never reported a viclation
throughout a series of simulation does not mean that it can never be
violated. Tools like code and functional coverage can satisfy us that
a portion of a design was thoroughly verified—but there will (and
should) always be a nagging doubt.

Formal tools called model checker or assertion provers can mathe-
matically prove that, given an RTL design and some assumptions
about the relationships of the input signals, an assertion will always
hold true. If a counter example is found, the formal tool will pro-
vide details on the sequence of events that leads to the assertion
violation. It is then up to you to decide if this sequence of events is
possible, given additional knowledge about the environment of the
design.

Given total freedom over the inputs of a design, you can probably
violate any and all assertions about its implementation, Fortunately,
the usage of the inputs of a design are subject to limitation and rules
to ensure proper operation of the design. Furthermore, these input
signals usually come from other designs that do not behave (one
hopes!) erratically. When proving some assertions on a design, it is
thus necessary to supply assertions on the inputs or state of the
design. The latter assertions are not proven. Rather, they are
assumed to be true and used to constrain the solution space for the
proof.

The correctness of a proof depends on the correctness of the

assumpticons10 made on the design inputs. Should any assumption
be wrong, the proof no longer stands. An assumption on a design’s
inputs thus becomes an assertion to be proven on the upstream
design supplying those inputs.

Semi-formal tools are hybrid tools that combine formal methods
with simulation. Semi-formal tools are an attempt to bridge the gap
between a familiar technology (simulation} and the fundamentally

10. The formal verification community calls these input assertions “con-
straints.” I used the term “assumptions” to differentiate them from ran-
dom-generation constraints, which are randomization concepts.
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Use formal meth-
ods to prove cases
uncovered in sim-
ulation.

different formal tocls. They use intermediate simulation informa-
tion—such as the current state of a design—as a starting point for
proving or disproving assertions.

Formal verification does not replace simulation or make it obsolete.
Simulation (including simulated assertions) is the lawnmower of
the verification garden: It is still the best tool for covering broad
swaths of functionality and for weeding out the easy-to-find and
some not-so-casy-to-find bugs. Formal verification puts the finish-
ing touch on those hard-to-reach corners in critical and important
design sections and ensures that the job is well done. Using func-
tional coverage metrics collected from simulation (for example,
request patterns on an arbiter), identifies conditions that remain to
be verified. If those conditions would be difficult to create within
the simulation environment, using these conditions as assumptions,
proves the correctness of the design for the remaining uncovered
cases.

REVISION CONTROL

Are we all looking
at the same thing?

Files must be cen-
trally managed.

One of the major difficulties in verification is to ensure that what is
being verified is actually what will be implemented. When you
compile & Verilog source file, what is the guarantee that the design
engineer will use that exact same file when synthesizing the design?

When the same person verifies and then synthesizes the design, this
problem is reduced to that person using proper file management
discipline. However, as I hope to have demonstrated in Chapter 1,
having the same person perform both tasks is not a reliable func-
tional verification process. It is more likely that separate individuals
perform the verification and synthesis tasks.

In very small and closely knit groups, it may be possible to have
everyone work from a single directory, or to have the design files
distributed across a small number of individual directories. Every-
one agrees where each other’s files are, then each is left to his or her
own device. This situation is very common and very dangerous:
How can you tell if the designer has changed a source file and
maybe introduced a functional bug since you last verified it?
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Revision Control

It must be easy to
get at all the files,
from a single loca-
tion,

HDL models are
software projects!

Free and commer-
cial tools are avail-
able.

All source files are
centrally managed.

This methodology is not scalable either. It quickly breaks down
once the team grows to more than two or three individuals. And it
does not work at all when the team is distributed across different
physical or geographical areas. The verification engineer is often
the first person to face the non-scalability challenge of this environ-
ment. Each designer is content working independently in his or her
own directories. Individual designs, when properly partitioned,
rarely need to refer to some other design in another designer’s
working directory. As the verification engineer, your first task is to
integrate all the pieces into a functional entity. That’s where the dif-
ficulties of pulling bits and pieces from heterogeneous working
environments scattered across multiple file servers become
apparent.

The Software Engineering Experience

For about 25 years, software engineering has been dealing with the
issues of mianaging a large number of source files, authored by
many different individuals, verified by others and compiled into a
final product. Make no mistake: Managing an HDL-based hardware
design project is no different than managing a software project.

To help manage files, software engineers use source contrel man-
agement systems. Some are available, free of charge, either bundled
with the UNIX operating systems (RCS, CVS, SCCS), or distrib-
nted by the GNU project (RCS, CVS) and available in source form
at:

ftp://prep.al.mit.edu/pub/gnu

Commercial systems, some very sophisticated, are also available.

Figure 2-18 shows how source files are managed using a source
control management system. All accesses and changes to source
files are mediated by the management system. Individual authors

;-
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and users interact solely through the management system, not by
directly accessing files in working directories.

Figure 2-18. L. Create 3. Check out % 4. Modify
Data flow in a 2. Check in 9. Update,
source control / .
system 6. Update 5. Check in
9. Update 3. Check out

/ vleflergﬁ
2 8332:2 8. Check in
@ 9. Update & =

Source code management systems maintain not only the latest ver-
sion of a file, but also keep a complete history of each file as sepa-
rate versions. Thus, it is possible to recover older versions of files,
or to determine what changed from one version to another. It is a
good idea to frequently check in file versions. You do not have to
rely on a backup system if you ever accidentally delete a file.
Sometimes, a series of modifications you have been working on for
the last couple of hours is making things worse, not better. You can
easily roll back the state of a file to a previous version known to
work.,

4. Modify
7. Modify

The history of a
file is maintained.

The teamowns all 'When using a source management system, files are no longer

the files. owned by individuals. Designers may be nominally responsible for
various sections of a design, but anyone—with the proper permis-
sions—can make any change to any file. This lets a verification
engineer fix bugs found in RTL code without having to rely on the
designer, busy trying to get timing closure on another portion of the
design. The source management system mediates changes to files
either through exclusive locks, or by merging concurrent modifica-
tions.
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Revision Control

Configuration Management

Each user works
from a wiew of the
file system.

Figure 2-19.

User views of
managed
source files

Configurations are
created by tagging
a set of versions.

Configuration
management trans-
lates to tag man-
agement.

Each engineer working on a project managed with a source control
system has a private view of all the source files (or a subset thereof)
used in the project. Figure 2-19 shows how two users may have two
different views of the source files in the management system.
Views need not be always composed of the latest versions of all the
files. In fact, for a verification engineer, that would be a hindrance.
Files checked in on a regular basis by their authors may include
syntax errors, be simple placeholders for future work, or be totally
broken. It would be very frustrating if the model you were trying to
verify kept changing faster than you could identify problems with

4 éa

design.v 1.53 design.v 1.41
cpuif.v 1.28 cpuif.v 1.17
tb.v 1.38 th.v 1.1..1.49 th.v 1.38

design.v 1.1..1.56

cpuif.v 1.1..1.32

All source management systems use the concept of symbolic tags
that can be attached to specific versions of files. You may then refer
to particular versions of files, or set of files, using the symbolic
name, without knowing the exact version number they refer to. In
Figure 2-19, the user on the left could be working with the versions
that were tagged as “ready to simulate” by the author. The user on
the right, the system verification engineer, could be working with
the versions that were tagged as “golden” by the ASIC verification
engineer.

Managing releases becomes a problem of managing tags, which can
be a complex task. Table 2-1 shows a list of tags that could be used
in a project to identify the various versions of a file as it progresses
through the design process. Some tags, such as the “Version M.N”
tag, never move once applied to a specific version. Others, such as
the “Submit” tag, move to newer versions as the development of the
design progresses. Before moving a tag, it may be a good idea to
leave a trace of the previous position of a tag. One possible mecha-
nism for doing so is to append the date to the tag name. For exam-
ple, the old “Submit” version gets tagged with the new tag
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“Submit_000302” on March Z“d, 2000 and the “Submit” tag is
moved to the latest version.

i Tag Name' - |
Table 2-1. i Tag Name: plinaDe B
Example tags | Submit Ready to submit to functional verification.
for release Author has verified syntax correctness and
management basic level of functionality.

Bronze Passes a basic set of functional testcases.
Release is sufficiently functional for integra-
tion.

Silver Passes all functional testcases.

Gold Passes all functional testcases and meets cod-
ing coverage guidelines (requires additional
cormmer-case testcases).

To_Synthesis Ready to submit to synthesis. Usually
matches “Silver” or “Gold”,

To_Layout Ready to submit to layout. Usually matches
“Gold”.

Version_M.N Version that was manufactured. Matches cor-
responding “To_Layout™ release. Future ver-
sions of the same chip will move tags beyond
this point.

ON_YYMMDD | Some meaningful release on the specified
date.

Working with Releases

Releases are spe-
cific configura-
tions.

Views can become out-of-date as new versions of files are checked
into the source management system database and tags are moved
forward.

The author of the RTL for a portion of the design would likely
always work with the latest version of the files he or she is actively
working on, checking in and updating them frequently (typically at
relevant points of code development throughout the day and at the
end of each day). Once the source code is syntactically correct and
its functionality satisfies the designer (by using a few ad hoc test-
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Revision Control

Users must update
their view to the
appropriate
release.

Update often.

You can be noti-
fied of new
releases.

benches}, the corresponding version of the files are tagged as ready
for verification.

You, as the verification engineer, must be constantly on the look-
out for updates to your view. When working on a particularly diffi-
cult testbench, you may spend several days without updating your
view to the latest version ready to be verified. That way, you main-
tain a consistent view of the design under test and limit changes to
the testbenches, which you make. Once the actual verification and
debugging of the design starts, you probably want to refresh your
view to the latest “ready-to-verify” release of the design before run-
ning a testbench.

‘When using a concurrent development model where multiple engi-
neers are working in parallel on the 'same files, it is important to
check in modifications often, and update your view to merge con-
current modifications even more often. If you wait too long, there is
a greater probability of collisions that will require manuai resolu-
tion. The concept of concurrently modifying files then merging the
differences sounds impossibly risky at first. However, experience
has shown that different functions cor bug fixes rarely involve modi-
fication to the same lines of source code. As long as the modifica-
tions are separated by two or three lines of unmodified code,
merging will proceed without any problems. Trust me, concurrent
development is the way to go!

An interesting feature of some source management systems is the
ability to issue email notification whenever a significant event
occurs. For example, such a system could send e-mail to all verifi-
cation engineers whenever the tag identifying the release that is
ready for verification is moved. Optionally, the e-mail could con-
tain a copy of the descriptions of the changes that were made to the
source files. Upon receiving such an e-mail, you could make an
informed decision about whether to update your view immediately.
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ISSUE TRACKING

All your bug are The job of any verification engineer is to find bugs. Under normal

belong to us! conditions, you should expect to find functional irregularities. You
should be reaily worried if no problems are being found. Their
occurrence is normal and do not reflect the abilities of the hardware
designers. Even the most experienced software designers write
code that includes bugs, even in the simplest and shortest routines.
Now that we’ve established that bugs will be found, how will you
deal with them?

Bugs must be Once a problem has been identified, it musz be resolved. All design

fixed. teams have informal systerns to track issues and ensure their resolu-
tions. However, the quality and scalability of these informal sys-
tems leaves a lot to be desired.

What Is an Issue?

Isitworth worry-  Before we discuss the various ways issues can be tracked, we must

ing about? first consider what is an issue worth tracking. The answer depends
highly on the tracking system used. The cost of tracking the issue
should not be greater than the cost of the issue itself. However, do
you want the tracking system to dictate what kind of issues are
tracked? Or, do you want to decide on what constitutes a trackable
issue, then implement a suitable tracking system? The latter posi-
tion is the one that serves the ultimate goal better: Making sure that
the design is functionally correct.

An issue is arything that can affect the functionality of the design:
1. Bugs found during the execution of a testbench are clearly
issues worth tracking.

2. Ambiguities or incompleteness in the specification document
should also be tracked issues. However, typographical errors
definitely do not fit in this category.

3. Architectural decisions and trade-offs are also issues.

4. FErrors found at all stages of the design, in the design itself or in
the verification environment should be tracked as well.

5. If someone thinks about a4 new relevant testcase, it should be
filed as an issue.
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Issue Tracking
When in doubt, It is not possible to come up with an exhaustive list of issues worth
track it. tracking. Whenever an issue comes up, the only criterion that deter-

mines whether it should be tracked, should be its effect on the cor-
rectness of the final design. If a bad design can be manufactured
when that issue goes unresolved, it smust be tracked. Of course, all
issues are not created equal. Some have a direct impact on the func-
tionality of the design, others have minor secondary effects. Issues
should be assigned a priority and be addressed in order of that
priority.

You may choose Some issues, often of lower importance, may be consciously left

not to fix anissve.  unresolved. The design or project team may decide that a particular
problem or shortcoming is an acceptable limitation for this particu-
lar project and can be left to be resolved in the next incarnation of
the product. The principal difficulty is to make sure that the deci-
sion was a conscious and rational one!

The Grapevine System

Issues can be ver-  The simplest, and most pervasive issue tracking system is the
bally reported. grapevine. After identifying a problem, you walk over to the hard-
‘ ware designer’s cubicle (assuming you are not the hardware
designer as well!) and discuss the issue. Others may be pulled into
the conversation or accidentally drop in as they overhear something
interesting being debated. Simple issues are usually resolved on the
spot. For bigger issues, everyone may agree that further discussions
are warranted, pending the input of other individuals. The priority
of issues is implicitly communicated by the insistence and fre-
quency of your reminders to the hardware designer.

It works only The grapevine system works well with small, closely knit design

under specific con-  groups, working in close proximity. If temporary contractors or

ditions. part-time engineers are on the team, or members are distributed
geographically, this system breaks down as instant verbal commu-
nications are not readily available. Once issues are verbally
resolved, no one has a clear responsibility for making sure that the
solution will be implemented.

You are con- Also, this system does not maintain any history. Once an issue is
demned torepeat  resolved, there is no way to review the process that led to the deci-
past mistakes. sion. The same issue may be revisited many times if the implemen-
tation of the solution is significantly delayed. If the proposed
resolution turns out to be inappropriate, the team may end up going
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in circles, repeatedly trying previous solutions. Without history, you
are condemned to repeat it. There is no opportunity for the team to
learn from its mistakes. Learning is limited to individuals, and to
the extent that they keep encountering similar problems.

Fhe Post-It System

Issues can be
tracked on little
pieces of paper.

If the paper disap-
pears, so does the
issue.

Issues cannot be
prioritized.

History will repeat
itself.

When teams become larger, or when communications are no longer
regular and casual, the next issue tracking system that is used is the
3M Post-It™ note system. It is easy to recognize at a glance: Every
team member has a number of telltale yellow pieces of paper stuck
around the periphery of their computer monitor.

This evolutionary system only addresses the lack of ownership of
the grapevine system: Whoever has the yellow piece of paper is
responsible for its resolution, This ownership is tenuous at best.
Many issues are “resolved” when the sticky note accidentally falls
on the fioor and is swept away by the janitorial staff,

With the Post-It system, issues are not prioritized. One bug may be
critical to another teamn member, but the owner of the bug may
choose to resolve other issues first simply because they are simpler
and because resolving them instead reduces the clutter around his
computer screen faster. All notes look alike and none indicate a
sense of urgency more than the others.

And again, the Post-It system suffers from the same learning dis-
abilities as the grapevine system. Because of the lack of history,
issues are revisited many times, and problems are recreated
repeatedly.

The Procedural System

Issues can be
tracked at group
meetings.

Only the biggest
issues are tracked.

The next step in the normal evolution of issue tracking is the proce-
dural] system. In this system, issues are formally reported, usually
through free-form documents such as e-mail messages. The out-
standing issues are reviewed and resolved during team meetings.

Because the entire team is involved and the minutes of meetings are
usually kept, this system provides an opportunity for team-wide
learning. But the procedural system consumes an inordinate amount
of precious meeting time. Because of the time and effort involved
in tracking and resolving these issues, it is usually reserved for the
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most important or controversial ones. The smaller, less important—
but much more numerous—issues default back to the grapevine or
Post-1t note systems.

Computerized System

Issues can be A revolution in issue tracking comes from using a computer-based
tracked using data-  systern. In such a system, issues must be seen through to resolution:
bases. Outstanding issues are repeatedly reported loud and clear. Issues

can be formally assigned to individuals or list of individuals. Their
resolution need only involve the required team members. The com-
puter-based system can automatically send daily or weekly status
reports to interested parties.

A history of the decision making process is maintained and
archived. By recording various attempted solutions and their effec-
tiveness, solutions are only tried once without going in circles. The
resolution process of similar issues can be quickly looked-up by
anyone, preventing similar mistakes from being committed repeat-
edly.

Butitshouldniot  Even with its clear advantages, computer-based systems are often

beeasier totrack  ynsnccessful. The main obstacle is their lack of comparative ease-

them verballyor  of yge. Remember: The grapevine and Post-It systems are readily

onpapet: available at all times. Given the schedule pressure engineers work
under and the amourit of work that needs to be done, if you had the
choice to report a relatively simple problem, which process would
you use:

1. Walk over to the person who has to solve the problem and ver-
bally report it.

2. Describe the problem on a Post-It note, then give it to that same
person (and if that person is not there, stick it in the middle of
his or her computer screen).

3. Enter a description of the problem in the issue tracking database
and never leave your workstation?

Ttshould nottake  You would probably use the one that requires the least amount of
longer to submit time and effort. If you want your team to use a computer-based
anissuethantofix  joque tracking system successfully, then select one that causes the
- smallest disruption in their normal work flow. Choose one that is a
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Email-based sys-
fems have the
greatest accep-
tance.

METRICS

simple or transparent extension of their normal behavior and tools
they already use.

¥ was involved in a project where the issue tracking system used a
proprietary X-based graphical interface. It took about 15 seconds to
bring up the entire interface on your screen. You were then faced
with a series of required menu selections to identify the precise
division, project, system, sub-system, device and functional aspect
of the problem, followed by several other dialog boxes to describe
the actual issue. Entering the simplest issue took ar least three to
four minutes. And the system could not be accessed when working
from home on dial-up lines. You can guess how successful that sys-
tem was...

The systems that have the most success invariably use an e-mail-
based interface, usually coupled with a Web-based interface for
administrative tasks and reporting. Everyone on your team uses e-
mail. It is probably already the preferred mechanism for discussing
issues when members are distributed geographically or work in dif-
ferent time zones. Having a system that simply captures these e-
mail messages, categorizes them and keeps track of the status and
resolution of individual issnes (usnally through a minimum set of
required fields in the e-mail body or header), is an effective way of
implementing a computer-based issue tracking system.

Metrics are essen-
tial management
tools.

Metrics are best
observed overtime
to see trends.

Historical data
should be used to
create a baseline,

Managers love metrics and measurements. They have little time to
persenally assess the progress and status of a project. They must
rely on numbers that (more or less) reflect the current situation.

Metrics are most often used in a static fashion: “What are the values
today?’ “How close are they to the values that indicate that the
project is complete?” The odometer reports a static value: How far
have you travelled. However, metrics provide the most valuable
information when observed over time. Not only do you know where
you are, but also you can know how fast you are going, and what
direction you are heading,. (Is it getting better or worse?)

When compared with historical data, metrics can paint a picture of
your learning abilities. Unless you know how well (or how poorly)
you did last time, how can you tell if you are becoming betier at
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Metrics

Metrics can help
assess the verifica-
tion effort.

your job? It is important to create a baseline from historical data to
determine your productivity level. In an industry where the manu-
facturing capability doubles every 18 months, you cannot afford to
maintain a constant level of productivity.

There are several metrics that can help assess the status, progress
and productivity of functional verification. One has already been
introduced: code coverage.

Code-Related Metrics

Code coverage
may not be rele-
vant.

The number of
lines of code can
measure imple-
mentation effi-
ciency.

Lines-of-code
ratio can measure
complexity.

Code change rate
should trend
toward zero.

Code coverage measures how thoroughly the verification suite
exercises the source code being verified. That metric should climb
steadily toward 100% over time.-From project to project, it should
climb faster, and get closer to 100%.

However, code coverage is not a suitable metric for all verification
projects. It is an effective metric for the smallest design unit that is
individually specified (such as an FPGA, a reusable component or
an ASIC). But it is ineffective when verifying designs composed of
sub-designs that have been independently verified. The objective of
that verification is to confirm that the sub-designs are interfaced
and cooperate properly, not to verify their individual features. It is
unlikely (and unnecessary) to execute all the statcments.

The total number of lines of code that is necessary to implement a
verification suite can be an effective measure of the effort required
in implementing it. This metric can be used to compare the produc-
tivity offered by new verification languages or methods. If they can
reduce the number of lines of code that need to be written, then they
should reduce the effort required to implement the verification.

The ratio of lines of code between the design being verified and the
verification suite may measure the complexity of the design. His-
torical data on that ratio could help predict the verification effort for
a new design by predicting its estimated complexity.

If you are using a source control system, you can measure the
source code changes over time. At the beginning of a project, code
changes at a very fast rate as new functionality is added and initial
versions are augmented. At the beginning of the verification phase,
many changes in the code are required by bug fixes. As the verifica-
tion progresses, the rate of changes should decrease as there are
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Figure 2-20.

Ideal code
change rate
metric over
time

fewer and fewer bugs to be found and fixed. Figure 2-20 shows a
plot of the expected code change rate over the life of a project.
From this metric, you are able to determine if the code is becoming
stable, or identify the most unstable sections of a design.

Rate of change

Time

Quality-Related Metrics

Quality is subjec-
tive, but it can be
measured indi-
rectly.

Functional cover-
age can measure
testcase complete-
ness.

A simple metric is
the number of
known issues.

Cede will be worn
out eventually.

Quality-related metrics are probably more directly related with the
functional verification than other productivity metrics. Quality is a
subjective value, yet, it is possible to find metrics that correlate
with the level of quality in a design. This is much like the number
of customer complaints or the number of repeat customers can be
used to judge the quality of retail services.

Functional coverage measures the range and combination of input
and output values that were submitted to and observed from the
design, and of selected internal values, By assigning a weight to
each functional coverage metric, it can be reduced to a single func-
tional coverage grade measuring how thoroughly the functionality
of the design was exercised. By weighing the more important func-
tional coverage measures more than the less important ones, it gives
a good indicator of the progress of the functional verification. This
metric should evolve rapidly toward 100% at the beginning of the
project then significantly slow down as only hard-to-reach func-
tional coverage points remain.

The easiest metric to collect is the number of known outstanding
issues. The number could be weighed to count issues differently
according to their severity. When using a computer-based issue
tracking system, this metric, as well as trends and rates, can be eas-
ily generated. Are issues accumulating (indicating a growing qual-
ity problem)? Or, are they decreasing and nearing zero?

If you are dealing with a reusable or long-lived design, it is useful
to measure the number of bugs found during its service life. These
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Metrics

are bugs that were not originally found by the verification suite. If
the number of bugs starts to increase dramatically compared to his-
torical findings, it is an indication that the design has outlived its
useful life. It has been modified and adapted too many times and
needs to be re-designed from scratch. Throughout the normal life
cycle of a reusable design, the number of outstanding issues exhib-
its a behavior as shown in Figure 2-21.

Figure 2-21. 5 Development  Womout

Number of 7] Useful life

putstanding ‘% l

issues °

throughout the ;“?

life cycle of a
design

Tme

Interpreting Metrics

Whatever gets
measured pets
done.

Make sure metrics
are correlated with

Because managers rely heavily on metrics to measure performance
(and ultimately assign reward and blame), there is a tendency for
any organization to align its behavior with the metrics. That is why
you must be extremely careful to select metrics that faithfully rep-
resent the situation and are correlated with the effect you are trying
to measure or improve. If you measure the number of bugs found
and fixed, you quickly see an increase in the number of bugs found
and fixed. But do you see an increase in the quality of the code
being verified? Were bugs simply not previously reported? Are
designers more sloppy when wiiting their code since they’ll be
rewarded only when and if a bug is found and fixed?

Figure 2-22 shows a list of file names and current version numbers
maintained by two different designers. Which designer is more pro-

theeffectyouwant 4 0ive? Do the large version numbers from the designer on the left
fo messure. indicate someone who writes code with many bugs that had to be
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Figure 2-22,

Using version
numbers as a
metric

Figure 2-23,

Using code
change rate as
a metric

fixed? Or, are they from a cautious designer who checkpoints
changes often?

alu_e.vhd 1.15
alu_xtl.vhd 1.234
decoder_e.vhd 1.12
decoder_rtl.vhf 1,155
dpath_e.vhd 1.7
dpath_rtl.vhd 1.176

cpuif_e.vhd 1.2
cpuif_rtl.vhd 1.4
regfile_e.vhd 1.1
regfile_rtl.vhf 1.7
addr_dec_e.vhd 1.3
addr_dec_rtl.vhd 1.6

On the other hand, Figure 2-23 shows a plot of the code change rate
for each designer. What is your assessment of the code quality from
designer on the left? It seems to me that the designer on the right is
not making proper use the revision control system.

v

v
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Summary

SUMMARY

Despite their reporting many false errors, linting and other static
code checking tools are still the most efficient mechanism for find-
ing certain classes to problems.

Simulators are only as good as the model they are simulating. Sim-
ulators offer many performance enhancing options and the possibil-
ity to co-simulate with other languages or simulators.

Assertion-based verification is a powerful addition to any verifica-
tion methodology. This approach allows the quick identification of
problems, where and when they occur.

Hardware verification languages offer an increase in productivity
because of their specialization to the verification task and their sup-
port for coverage-driven random-based verification.

Use code and functional coverage metrics to provide a quantitative
assessment of your progress. Do not focus on reaching 100% at all
cost, nor should you consider the job done when you’ve reached
your coverage goals.

Use a source control system and an issue tracking system to man-
age your code and bug reports.
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CHAPTER 3

THE VERIFICATION PLAN

84

In this chapter, I describe the verification plan as a specification of
the functional verification testcases and of the testbench infrastruc-
ture that will be necessary to support them. It is used to define what
is first-time success, how a design is verified and which testbenches
are written.

The design project that sits before you will propel your company to
new levels of market share and profitability. A few system archi-
tects have designed and specified a system that should meet perfor-
mance and cost goals. Several design leaders, using the system
specification, have been working on writing detailed functional
specification documents for each of the ASICs and FPGAs that are
required to build this new product. Teams of hot-shot hardware
designers are being assembled to implement each ASIC or FPGA.
Using the detailed specification documents for each device, they
are coming up with a detailed implementation schedule. So far, it
appears that the project will meet its production deadline.

You are in charge of the verification for this design. Not only must
this product be on time, but also it must be functionally correct.
Your company’s reputation depends on it. You have been asked by
the project manager to produce a detailed schedule for the verifica-
tion and define your staffing requirements. How can you determine
either?
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THE ROLE OF THE VERIFICATION PLAN

Traditionally, veri-
fication is an ad-
hoc process.

Tools exist to help
determine when
you are done.

In a traditional verification process, your decision would be simple.
In fact, your own position would not exist. Verification would be
left to each hardware designer to do as they wish. It would be per-
formed as time allows. And everybody’s fingers would be crossed
hoping that system integration would be smooth and that the board
designs would not need too many patch wires. Many devices would
be implemented in FPGAs, trading additional per-unit costs for
flexibility in fixing problems later found during system integration.

The tools described in the previous chapter will help during your
verification effort, Code coverage, functional coverage, bug discov-
ery rate and code change rates are mefrics that indicate how much
progress you have made toward your goal. But they are like stock
market indices or batting averages: They provide a snapshot of the
current situation and, if recorded over time, show trends and pro-

gression, However, they cannot be used to predict the future, !

Specifying the Verification

You need a tool to
determine when
you will be done.

Start from the
design specifica-
tion.

Today’s question is about producing a schedule. You must deter-
mine, as reliably as possible, when the verification will be com-
pleted to the required degree of confidence. Unless you have a
detailed specification of the work that needs to be accomplished,
you cannot determine how many people you need, nor how long it
is going to take or even if you are doing work that needs to be done.
That’s what the verification plan is about.

Before you can decide on a plan of attack for the verification, a
specification document for the design to be verified must exist. And
it must exist in written form. “Folklore® specifications that describe
the design as, “The same thing as we did before, but at twice the
clock rate and with these additional features.” are insufficient.
Often, the design specification is implemented using two separate
documents written at different abstraction levels.

1. However, many financial and sports analysts make a good living pre-
dicting an essentially random process or explaining, after the fact, why
everybody was wrong.
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The Role of the Verification Plan

The specification
document is the
golden reference.

The verification
plan is the specifi-
cation document
for the verifica-
tion effort.

» The first is the architectural specification, which details the
functional requirements of the device.

¢ The second is the design specification, which describes the par-
ticular implementation of the architecture down to the block
level.

The verification plan can start to be written once the architectural
specification document is complete. It can be augmented with
implementation-specific testcases once the implementation docu-
ment is complete.

The specification document is the common source for the verifica-
tion and implementation efforts. It is the golden reference and the
rule of law. Later, when discrepancies are found between the
response expected by the testbench and the one produced by the
design under verification, the specification document arbitrates and
decides which one has the correct answer. If necessary, the specifi-
cation document should be elaborated to remove any ambiguity.
The specification document must exist before the implementation.
The implementation must follow the specification. If the specifica-
tion depends on or is a consequence of the implementation, it will
be impossible to verify because the specification will change every
time the implementation changes.

Today’s million-gate ASIC designs cannot proceed without a
detailed specification document being written first. With the verifi-
cation effort being 100% to 200% of the RTL design effort, why
should it proceed without a specification document of its own? The
verification plan is the specification document for the verification
effort.

Defining First-Time Success

H, and only if, it is
in the plan, will it
be verified.

The verification plan provides a forum for the entire design team to
define what first-time success is. It is a mechanism that ensures all
essential features are appropriately verified. If you want first-time
success, you must identify which features must be exercised under
which conditions and what the expected response should be. The
verification plan documents which features are a priority and which
ones are optional. In the face of schedule pressure, the decision to
drop features from the first-time success requirements becomes a
conscious one. The alternative is to live with whatever happens to
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From the verifica-
tion plan, a
detailed schedule
cai be created.

The teamn owns the
verification plan.

This process is not

work when the decision to ship the design cuts off the verification
effort like a guillotine. Some of the features, essential for market
acceptance, might fall in the basket.

The verification plan creates a line in the sand that cannot be
crossed without endangering the success of the project in the mar-
ket place. Once the plan is written, you know how many testcases
must be created, how complex they need to be and how they depend
on each other. You can define a detailed verification schedule, and
allocate tasks to resources, parailelizing verification as much as
possible. Once the RTL passes all of the testcases, and you are sat-
isfied with the coverage and bug-rate metrics, the design can be
shipped. Not before.

It is important for everyone involved with the design project to real-
ize that they have a stake in the verification plan. The responsibility
of an RTL designer is not to design RTL. That’s only a means to an
end. His or her responsibility is to produce a working design. The
entire design team must contribute to the verification plan, to make
sure that it is complete and correct.

The process used to write a verification plan is not new. It has been

revolutionary. used for decades by NASA, the FAA and aerospace companies to
ensure that the ultra-reliable systems they were implementing met
their specifications. This process has been used for software as well
as for hardware designs.

LEVELS OF VERIFICATION

Verificationcanbe  The first question, when planning the verification, is to determine

performed at vari-
ous levels of gran-
ularity.

the level of granularity for the verification effort. A design is poten-
tially composed of several levels. Some have a physical partition,
such as printed circuit boards, FPGAs and ASICs. Others have a
logical partition, such as synthesized units, reusable components or
sub-systems.

As illustrated in Figure 3-1, each level of verification is best suited
for a particular application and objective. The nature of design with
reusable components shifts where stand-alone unit-level verifica-
tion ends and system-level verification starts within the physical
hierarchy, compared with a more traditional design process. Design
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Figure 3-1.

with reuse does not diminish the need for verification. The unit-to-
system boundary becomes a logical one instead of a physical one.

Traditional Design with

Application of Design Reuse
differentlevels Connectivity Board Board
of verification
System
Transaction System
Cooperation System
Data flow on Chip
Sub-sys
Sub-sys
Functionality ASIC Reusable
- FPGA Comp
Ad-hoc Unit Unit
Basic operations
Sub-unit
Deciding between ~ Smaller partitions are casier to verify because they offer greater
levels of granular-  coptrollability and observability. It is easier to set up interesting
ity involves rade-  eopditions and state combinations and to observe if the response is
ofts. as expected. With larger partitions, the integration of the smaller
partitions it contains is implicitly verified at the cost of lower con-
trollability and observability.
Verifying at a Because the verification requires a significant implementation
given level of effort, any partition being verified must have relatively stable inter-
granularity faces and intended functionality. If the interfaces keep changing, or
;ﬁiﬁezwble functionality keeps being moved from one partition to another, the
) testbenches will constantly need to be changed with little progress
being made. Once you’ve decided on specific partitions to be veri-
fied, their interface and overall functionality must be specified early
on and remain as stable as possible. Ideally, each verified partition
should have its own specification document or, at a minimum, its
own section in the specification document.
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Levels of Verification

Unit-Level Verification

Implementation
determines the
content of this par-
tition.

Use ad-hoc verifi-
cation for design
units.

They are too
numerous to verify
formally.

Unit-level verifi-
cation may be
required in large
devices,

Architect the
design to facilitate
unit-level verifica-
tion.

Design units are logical partitions. They are created to facilitate the
implementation or the synthesis process. They vary from the rela-
tively small (e.g., FIFOs and state machines) to the complex (e.g.,
PCI slave interface and DSP datapaths). Their interfaces and func-
tionality tend to vary a lot over time, as implementation details
highlight shortcomings in the initial design. They usually do not
have an independent specification document to verify against
either.

Because these design units are usually in a constant state of flux,
they are better left to an ad-hoc verification process. The designer
himself verifies the basic operation of the unit. The objective of this
verification is to ensure that there are no syntax errors in the RTL
code, and that basic functionality is operational. It is not to create a
regressionable test suite and obtain high code coverage.

The high number of design units in any project makes a verification
process implemented at that level too time consuming. Each would
require a custom verification environment, as described in Chapters
5 and 6. The precious verification resources would spend an inordi-
nate amount of time creating stimulus generators and response
monitors for a myriad of ever-changing interfaces. Writing a lot of
simple testbenches is just as much work, if not more, as writing a
few complex ones. And verification at the ASIC- or FPGA-level
would still be required to verify the integration of these design
units.

In today’s very large and complex ASICs and FPGAs, it may not be
possible to obtain the necessary functional coverage when verifying
from the ASIC or FPGA partition. And not all units are created
equal. For the highly sensitive and complex functional units, it may
be more efficient to perform unit-level verification to have suffi-
cient levels of controllability and cbservability and reach the
desired level of confidence, Ideally, each functional unit verified at
the unit level should have its own specification document.

If your design is so complex that you have to perform some unit-
level verification, it should be designed to make that unit-level ver-
ification as relevant and complete as possible. Partition the design
so the features to be verified are completely contained within a unit
and can be verified on a stand-alone basis. Once verified, these fea-
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tures can be assumed to work during the verification of the higher
levels. If the features to be verified at the unit level require interac-
tion with other units, they have to be re-verified at a higher-level
where the features are fully contained, to ensure that the integration
correctly implements them.

Reusable Components Veriftcation

Reusable designs
are independent of
any particular use.

Verification com-
ponents ¢an be
reused as well.

Reusable compo-
nents need a
regression test
suite.

Reusable components are designed to an independent specification.
They are intended to be used as-is and unchanged in many different
designs. Their reusability can be limited to a single product, the
entire product family, or they could be applicable to any product
requiring their functionality. They must be designed—and thus ver-
ified—independent of any one usage. It is a good idea to use asser-
tions (see “Assertions” on page 64) to specify restrictions and
requirements on the inputs of reusable components. They help
ensure that the reused components is always used as intended.

Reusable components are usually designed using standardized
interfaces. These interfaces can be designed to standard on-chip
buses, or industry-standard external physical interfaces. The verifi-
cation components used to stimulate and monitor these interfaces
can be themselves reused across the various verification environ-
ments used to verify different reusable components. The verifica-
tion effort can be leveraged across multiple components, thus
minimizing the overall investment in verification. Chapter 6 will
detail how to architect a testbench to promote the creation and use
of reusable verification components.

Reusable components are used in many designs. When they are
modified, either to fix problems that were found, or to enhance their
functionality, you must make sure that they remain backward com-
patible. This is accomplished by implementing a regression suite
that verifies the compliance of the component after any modifica-
tion. Checking the equivalence of the new version with the previous
version using formal verification would not really work unless the
modifications were not functional. Adding functionality or fixing
problems, by definition, makes the new version of the design not
equivalent to the previous one.

They need thor- Components will not be reused if potential users do not have confi-
ough functional dence that they perform better and more reliably than one they
coverage. could design themselves. This confidence can be obtained only by
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demonstrating the correctness and robustness of the components
through a thorough, well documented verification process.

ASIC and FPGA Verification

The physical parti-
tion is an ideal ver-
ification level.

‘They may have to
be treated as sys-
tems.

FPGAs now
require an ASIC-
like verification
process,

{\I?‘ICS and FPGAs are physical partitions. They form a natural par-
tition for verification because their interfaces and functionality do
not change very much after the initial specification of the system
and the completion of their specification documents.

The ever increasing densities offered by semiconductor technology
e'nables ever increasing integration of complex functionality into a
smgle device. To manage this complexity from a design and verifi-
f:auon standpoint, devices are often designed as a collection of
independently designed and verified components, usually reusable
but n‘ot necessarily so, In that case, the ASIC is called a Systemn-on-
a'-Chlp (S0C) and its verification resembles a system-level verifica-
tpn process, as described in the next section. The bulk of the func-
tional verification is performed using unit-level verification.

Traditionally, FPGAs were able to survive an ad-hoc, or even a
cs)r'npletely missing, verification process. Their ease of programma-
b.111ty,_0ften without additional component costs, allowed their func-
tionality to be modified up to the last minute. But today’s million-
gate EPGAS, even with only 50% effective usage, can implement
funcnons that are too complex to verify and debug during integra-
tion. Their functionality must be verified from the RTL code

before synthesis and implementation. ’

System-Level Verification

A system need not
follow physical
boundaries,

Ever‘ybody’s definition of a system is different. In this book, a sys-
tem 1s a logical partition composed of independently verified com-
ponents. A system could thus be composed of a few reusable
components and cover a subset of an SoC ASIC. A system could
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Figure 3-2.

Logical
system
partition

The verification
focuses on interac-
tion.

The testcase
defines the system.

also be composed of several ASICs physically located on separate
printed circuit boards, as illustrated in Figure 3-2.

System

Board

Board

REEEREy?
> ASIC

Individual components are specified and designed by separate indi-
viduals or teams with assumptions about how they will interact
with other components. These assumptions made by different peo-
ple are a prime source of bugs. System-level verification thus
focuses on the interactions among the individual components
instead of the functionality implemented in each one. The latter is
better verified at the component-level verification. The system veri-
fication engineer has to rely on the individual components being
functionally correct.

Since systems are logical partitions, they can be composed of any
number of components, regardless of their physical location. Which
system to use and verify depends on the testcases that are deter-
mined to be interesting and significant. To minimize the simulation
overhead, it is preferable to use the smallest possible system neces-
sary to execute the specified testcase. However, the number of pos-
sible systems being very large, a set of “standard” systems should
be defined. The same system is used for many testcases even if, in
some cases, some of the included componenis are not required.

Board-Level Verification

Board-leve]l mod-
els are generated
from the board
design tool.

The primary objective of board-level verification is to confirm that
the “system” captured by the board design tool is correct. Unlike a
logical system model, the model for the board design must be auto-
matically generated by the board capture tool. When verifying the
board design, or any other physical partition, you must make sure
that what is being verified is what will be manufactured. There
must be a direct link between the captured design and what is simu-
lated. Automatic generation of the board-level model from the cap-
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Many components
on a board do not
fit in a digital sim-
ulation environ-
ment.

Board-level para-
sitics can be mod-
eled.

ture tool provides that link. A logical system model has no such
restriction: It can be manually generated for the system of interest.

The main difficulty with board-level models is obtaining suitable
models for all the components. That is where third-party sources
and hardware modelers are useful (see “Verification Intellectual
Property” on page 42). Also, generating a model out of a board
design tool involves introducing approximations. For example, how
do you represent capacitors in a digital simulation environment?
Analog devices, connectors, opto-couplers and other components
used in board-level designs do not translate easily in a digital simu-
lation environment either.

The generated model may include models for board-level parasitics
that may affect the functional correctness of the board. As the speed
of signals in a board increases, transmission line effects are becom-
ing important. ASICs can no longer be designed without consider-
ation of their eventual use on a circuit board.

VERTFICATION STRATEGIES

Decide on a black-
or white-box
approach for vari-
ous levels of gran-
ularity.

Decide on the
level of abstraction
where the tescases
will be specified.

Given the functionality that needs to be verified, you must decide
on a strategy for carrying out the verification. You must decide on
the level of granularity where verification will be accomplished.
You must also decide on the invasiveness of the verification
approach that will -be used for each level of granularity. Testcases
can be either white-box or black-box, depending on the visibility
and knowledge you have of the internal implementation of each
unit under verification (see “Black-Box Verification” on page 12
and “White-Box Verification” on page 13).

You also need to decide the level of abstraction where the bulk of
the verification will be performed. The higher levels of abstraction
usually apply to coarser granularity of design under verification.
With higher levels of abstraction, you have less detailed control
over the timing and coordination of the stimulus and response, but
it is much easier to generate a lot of stimulus and verify long
responses. If detailed controls are required to perform certain

testcases, it may be necessary to work at a lower level of abstrac-
tion.
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A processor inter-

face could be veri-
fied at the cycle or
device driver [evel.

For example, verifying a processor interface can be accomplished
at the individual read and write cycle levels. But that requires each
testcase to have an intimate knowledge of the memory-mapped reg-
isters and how to program them. That same interface could be
driven at the device driver level. The testcase would have access to
a set of high-level procedural calls to perform complete operatior.ls.
Each operation is composed of many individual read and wnt_c
cycles to specific memory-mapped registers, but the testcase is
removed from these implementation details.

Verifying the Response

Plan how you will
check the
response.

Some responses
are difficult to ver-
ify in the simula-
tion.

Dietect errors as
early ag possible.

Deciding how to apply the stimulus is relatively casy. You. are under
complete control of its timing and content. It is venfyn.lg the
response that is difficult. You must plan how you w.ill detenpme the
expected response, then how to verify that the design pI'O'.\fldEd the
response you expected. The section titled, “Self-Che?klng Test-
benches” on page 341 suggests several techniques for implement-
ing output verification.

Throughout this book, implementing self-checking testbenches is
recommended (see “Simple OQutput” on page 252). But, it can
sometimes be difficult for a testbench to verify a response that can
be recognized immediately as right or wrong by a human. For
example, verifying a graphic engine involves checkir}g the output
picture for expected content. A self-checking simulation would be
very good at verifying individual pixels in the picture. But a huma‘n
would be more efficient in recognizing a filled red circle. The veri-
fication strategy must find a way to automate these types of
testcases.

It may be more efficient to have the simulation produce a set of out-
puts that can be later compared against a set of referen(:f: outputs.
The result of a simulation can be further processed outside of the
simulator to determine success or failure. However, it is more efﬁ-
cient to detect problems as early as possible. When the response 15
checked within the simulation, the error is identified while the
model is near the state that produced the error. It is easier to identify
and fix the error.
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FROM SPECIFICATION TO FEATURES

Identify features.

Enumerate inter-
face-based fea-
tures.

The first step in writing a verification plan is to identify the features
that will be verified. From the specification document, you enumer-
ate all the features that are described and thus must be verified.

- Other team members, especially the system architects and RTL

designers, contribute additional features to be verified. These addi-
tional features may not have been obvious in the specification to
someone unfamiliar with the purpose or characteristics of the
design. Other features may become significant once a particular
implementation is chosen. In The Art of Verification®, Haque, Mich-
elson and Khan propose using a methodical approach for extracting
significant and relevant features to verify by first looking at the
interfaces, then the functions, then finally the corner cases implied
by the chosen architecture.

For every interface on the design to be verified, enumerate every
feature it suggests that must be verified. The interfaced-based fea-
tures can be obtained by asking questions such as:

* What transactions must be applied?

» ‘What range of values?

* What sequences of transaction?

* What are the relevant transaction densities?

= What protocol violations should the design be able to sustain?

+ What are the relevant interactions between this interface and
other interfaces or internal design structures?

* Do transactions on an interface need to be synchronized with
those of another interface?

A subset of the interface-based feature list for a Universal Asyn-
chronous Receiver Transmitter (UART) is shown in Sample 3-1.

2. Faisal Hag,ue, Jon Michelson and Khizar Khan, “The Art of Verification
with VERA,” hitp:/fwww.verificationcentral.com
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Sample 3-1.

Some of the
interface-
based features
of a UART
design

Identify function-
based features.

1. The Clear-To-Send (CTS) pin must be asserted when the
UART can accept a new word to be transmitted via the CPU

interface.

2, The Data Terminal Ready (DTR) pin must be asserted when
there is a received word ready to be read by the CPU inter-
face.

3. Read and write cycles to addresses other than 0 through 4 are
ignored.

4. Back-to-back read/read, read/write, write/write and write/
read cycles within the address space are supported.

5. All bits in the configuration registers are readable, writable
and non-volatile.

s o
Following the major data paths through the design’, enumerate
every transformation and decision that must be verified. The func-
tion-based features can be obtained by asking questions such as:
» What are all the relevant configurations?

« What are the possible transformations that can be performed on
the data?

+ What are the possible sequences of transformation?

e What are the sensitive data values for triggering transforma-
tions? ‘

e ‘What are the sensitive values that affect each transformation?

o Where should the ransformed data end up?

» How is the data ordering affected?

» What error detection mechanisms exist and how are they trig-
gered?

« How do error mechanisms report errors?

» What happens to erroneous data?

A subset of the function-based feature list for a UART is shown in
Sample 3-2.

3. As specified in the architecture specification document, rio? in the
implementation.
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Sample 3-2,

Some of the
function-based
features of a
UART design

List architecture-
based features,

Sample 3-3,
Some of the
architecture-
based features
of a UART
design

Label each feature.

1. Data bits are sent and received serially with the least signifi-
cant bit first.

2. Data bytes are sent in the same order in which they were
written.

3. Data bytes are read in the same order in which they were
received.

4. Parity is generated according to configured mode.
5. Parity is checked according to configured mode.

Finally, based on detailed knowledge of the architecture of the
design, identify the conditions that will stress the design and push it
toward its limit. The architecture-based features can be obtained by
asking questions such as:

* Canl overflow or underflow a buffer? If so, what should hap-
pen? :

* Where are the resource bottlenecks?

¢ Can multiple requests for these resources oceur at the same
time?

¢ Can a transformation path affect, prevent or block another?

A subset of the architecture-based feature list for a UART is shown
in Sample 3-3.

1. Receiving one more byte while the receive buffer is full will
cause that byte to be dropped.

2. The Clear-to-Send (CTS) signal reflects the status of the
transmit buffer (asserted when not full).

3. Datais received and transmitted in full-duplex.

Features should be labeled and have a short description. The feature
should be described in terms of what conditions need to be verified
and the expected result, not how it is to be implemented. Each fea-
ture should be cross-referenced to the section or paragraph in the
specification document that describes it in detail. Ideally, the speci-
fication document should also contain a cross-reference to the fea-
ture list in the verification plan. Specify features for the proper level
of verification. The feature Iabel should be used in error messages
when it is found to be violated. Including feature labels in error
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messages will help in identifying what was assumed to have gone
wrong and in assessing if the behavior is indeed incorrect.

Assign features o When enumerating features, be careful to include them in the verifi-

asuitableverifica-  cation plan for the proper verification level. Some features are bet-

tion level. ter verified at the component (unit, reusable or ASIC) level, while
others must be verified at the system level. Very often, there will be
a large number of features concerned with verifying a critical func-
tion or block in your design. If the unit implementing that function
or containing that block is not being verified independently, now is
the time to reconsider your verification approach. It may be an indi-
cation that the unit needs to be verified independently to achieve
the necessary level of confidence.

Component-Level Features

They are fully con- A component can be a unit, a reusable component, or an entire
tained withinthe  ASIC, Component-level features are fully contained within the
unit being verified.  oomnonent being verified. They do not involve system-level inter-
action with other components. Their correctness can be determined
without depending on a subsequent verification of the integration of

- the component into a high-level system.

The bulk of the features will be component-level features. These
features are assumed to be functional when the component is used
ih a system-level verification.

System-Level Features

Minimize system- A system can be a subset of an ASIC, a few ASICs from different
level features. boards, an entire board design or the complete product. Because of
the large size and long runtime of system-level simulations, it is
necessary to minimize the features verified at this level. Whenever
something is identified as a system-level feature, question whether
it can be verified as a component-level feature instead. For exam-
ple, in the design illustrated in Figure 3-3, the MX ASIC can select
between the data from ASICs D@ or IDI under software control. Is
the switching feature a system-level feature? The answer is no. The
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Figure 3-3,

Example of a
system
structure

System-level fea-
tures include con-
nectivity, flow
control and inter-
operabiiity.

switching feature is entirely contained within the MX ASIC and is
thus a component-level feature.

4

10—» IDO
I1—» ID1F(>

System-level features are usually limited to connectivity, flow-con-
trol and inter-operability. For example, the connectivity from the
input ports to the output port would be a system-level feature, In
verifying the connectivity, it is necessary to switch the input from
the ID0 stream to the /DI stream. But the switching is not the pri-
mary objective of the verification and would be assumed to work.

Another system testcase would be verifying that full input FIFOs in
the MX ASIC creates back-pressure through the IDQ and ID]
ASICs and stops the flow of data until the congestion clears.

Error Types to Leok For

Assume design
tocls do not intro-
duce functional
erTors.

Likely errors are
different based on
the capture tool
used.

When listing features to be verified, there is an implicit assumption
about the errors that are likely to occur and should be found. Func-
tional verification must focus on finding functional errors in the
design. It is not the responsibility of functional verification to make
sure that the design tools are bug-free. Functional simulation
ensures that the design was implemented as specified without inter-
pretation errors or problems introduced by the designers. For exam-
ple, running all functional testbenches on the gate-ievel netlist only
verifies that the synthesis tool works properly. Formal verification
and static timing analysis are better tools to accomplish this task.

The types of errors that can be made are different when using dif-
ferent capture tools. When schematic capture tools are used, con-
nectivity errors, such as reversed bit orders in a bus, or mis-
connected individual bits within a bus, are very common. In an
RTL coding and logic synthesis environment, this type of error is
not likely to occur: If a bus is properly connected, either all the bits
work, or none do. Linting tools can detect some connectivity prob-
lems such as multiple drivers on a wire or an output that goes
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Look for func-
tional errors.

Prioritize

Prioritize the fea-
tures.

Less important
features receive
less attention.

nowhere and would be a better strategy for identifying these types
of problems.

Common errors in a synthesis-based design flow include wrong
polarities, protocol violations or incorrect computations. The type
of stimulus that proved useful in the days of schematic capture,
such as walking ones and zeroes may not be as useful in an RTL
design verification. A pair of patterns of alternating ones and
zeroes, for example “0xAAAA” followed by “0x55557, is usually
sufficient.

Using signatures in the data stream is another efficient technique to
detect functional errors. A signature can be as simple as a sequen-
tial number to help detect missing or repeating data items. A signa-
ture can also encode either the source or the expected destination of
a data item. For example, the data associated with an address in a
write cycle could contain a portion of the address and an identifica-
tion of the bus master issuing the cycle. The section titled, “Data
Tagging” on page 343 details how to use signatures to verify a class
of designs.

Not all features are created equal. Once they are enumerated, they
must be prioritized. Some features are must-have for the design to
properly function or to meet the demands of the market. This is the
stage that defines first-time success. These fealures must operate
properly for the design to be shipped. The completion of the verifi-
cation of these features gates the successful completion of the
project and the testbenches verifying these features are often on the
critical path. The must-have features need to be thoroughly verified
for all possible configuration and usage options.

The should-have features are secondary for the commercial success
of the design. They may stmply offer expansion capabilities or dif-
ferentiation from the competition. The main objective is to verify
their basic functicnality for correct operation. If time and resources
allow, more detailed verification of these features may be accom-
plished. The verification of these features may be cancelled if
schedule pressure forces the reallocation of resources to the verifi-
cation of more important features.
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Some features are
verified only as
time atlows.

Make an informed
decision when cut-
ting back on the

verification effort.

The nice-to-have features are purely optional, They are verified
only as time allows, usnally in a primitive fashion. The reality of
today’s design schedule almost guarantees that they’ll never be ver-
ified!

The pricritization of the features to be verified lets a project man-
ager make informed decisions when schedule pressures make it
necessary to eliminate some planned activities. The verification
effort can be trimmed starting with features that were predeter-
mined to be less important. If a greater impact of the project com-
pletion date is required and must-have features are dropped from
the verification, the decision will be a conscious one as these prior-
ities were clearly identified as critical to the initial marketing objec-
tives, Cutting the verification effort of must-have features requires a
conscious re-evaluation of the marketing objectives for the project.

Design for Verification

Hard-to-verify fea-
tures will be iden-
tified.

Modify the design
to aid verification.

At this stage of the verification planning, hard-to-verify features
will be identified. They can be difficult to verify because the chosen
partition lacks suitable controllability or observability of the fea-
tures. An example would be the verification that an embedded 64-
bit counter properly rolls over and that the processing algorithm
works properly across the roll-over point. The difficulty may be
because of a poor choice in verification granularity. In that case, a
smaller partition containing the hard-to-verify features should be
used. The difficulty may also be due to the choice of implementa-
tion architecture or an artifact of the design itself. If a smaller parti-
tion cannot be used, or would not ease the verification” of these
features, a grey- or white-box approach must be taken.

The advantage of planning the verification up front is that you can
still influence the implementation of the design. If some features
prove to be to difficult to verify given the current architecture and
feature set of the design, have the design modified to include addi-
tional features to aid in their verification. Hardware design engi-
neers will no doubt complain about adding functionality that is not
really needed by the design. However, if the alternative is to create
a design you cannot verify, what choice do they have? These fea-
tures have always proven to be usefil during lab integration of sam-
ple parts.
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Provide state pre-
load functions.

Provide datapath
by-pass paths.

Figure 3-4.

Verifiable
datapath for a
speech
synthesizer

If the design contains long counters or other state conditions which
require hundreds or thousands of cycles to reach from reset, make
sure they can be pre-loaded to an arbitrary value via a memory-
mapped register, Ideally, their current value should be available for
read back through the same register set. In the previous example, a
series of 8 bytes in the address space of the design could be allo-
cated to pre-loading and reading back the value of the 64-bit
counter.

The correct implementation of long data paths can also be difficult
to verify if you do not have detailed control over all the operands.
For examplé, speech synthesizers are simple digital signal process-

ing designs with a datapath that shapes random noise*. You have
complete control over the coefficients applied to the data samples to
form specific sounds. However, you do not have control over one
critical element; the primary input data value. That's a random
number. To properly verify the operation of this datapath, you need
control over its initial input value.

Coefficients
Random num. YYVYVYVY
Generator i
- Datapath  —» To mixer
Programmable
Value —*
Read-back ¢——

As shown in Figure 3-4, the design should include a mechanism to
use a programmable constant input value instead of a random num-
ber as input to the datapath. Conversely, you should also be able to
read back the output of the random number generator to ensure that
it is indeed producing random numbers.

Pop quiz: Why is the read-back point located after the multiplexer
that selects between the normal operation using the random number
generator and the programmable static value, and not at the output

of the random number generator‘?5

4. Itis used to produce consonant sounds, such as the sh sound. It is then
mixed with a shaped-base frequency used to produce vowel sounds,
such as the & sound, which hopefully creates intelligible speech.
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Provide sample
points.

Provide error
injection mecha-
nism.

If observability is the problem but not controllability, adding sam-
ple points readable through memory-mapped registers can help
ease the verification of some features. If the address space allocated
to the design is at a premium, these sample points could be multi-
plexed into a single address location, using a second address to
select which point is currently being sampled.

If the design includes error and exception detection mechanisms,
you may want to have provisions to force the detection of an error
or exception. For example, verifying the maskability of interrupts is
very time consuming if the design has to be coerced into every
exception condition. The same task is rendered considerably easier
if a simple register write can manually raise the same interrupts. Of
course, the task of verifying that the exception condition raises the
interrupt remains. The decision to include error injection should be
carefully considered. If it is for hardware verification only, it may
not be properly documented for the software engineers. This feature
may be accidentally turned on when a device driver writes a value
that was thought to be inoffensive.

DIRECTED TESTBENCHES APPROACH

Use for small
number of
testcases.

With directed testbenches, individual features are verified using
individual testbenches. The stimulus is manually crafted to exercise
that feature. The response is verified against the symptoms that
would appear should the feature not be correctly implemented.

Before yon embark on the directed testbenches path, you need to
consider its lack of scalability. This approach can be managed and
completed if the total number of testcases is in the low hundreds.
But as the number of testcases grows, so does the number of test-
benches. A project with over a thousand identified testcases would
require over a year to complete using a directed approach. For a
larger number of testcases, some form of testbench automation is
necessary to complete the task within an acceptable time frame.
Currently, the best method of testbench automation is the coverage-
driven random-based approach (see page 109).

5. You want to verify that, when the datapath is put into normal operation
mode, the multiplexer is functionally correct and the input value is
indeed coming from the random number generator.
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Group into Testcases

Group features
with similar verifi-
cation require~
ments.

Cross-reference
into the feature
list,

Define dependen-
cies.

Specify the
testcase stimulus,

Specify the accep-
tance criteria.

Specify what
errors to look for.

Features naturally fall into groups. Some features require similar
configuration, granularity or verification strategy to perform their
verification. To maximize productivity, these features should be
grouped together and assigned to the same verification engincer.
For example, all features related to the CPU interface should be
grouped together. As another example, verifying the baud rate,
number of data bits and parity generation of a UART falls within
the same group. Each group of feature verification forms a testcase.

Each testcase should be labeled and given a short description of its
objective. Its description should contain a list of the features veri-
fied in this testcase. The feature list should also be annotated with
cross-references to the testcases where a particular feature is being
verified. If a feature does not have a cross-reference to a testcase, it
is not being verified.

The description of a testcase should also contain a list of the fea-
tures assumed to be operational and functionally correct. From
these dependencies, you can determine the order in which the
testcases must be written, and identify any parallelism opportunities

in the testhench development effort.

The sequence and characteristics of the stimulus for the testcase
must also be described. For example, describe the various opera-
tions or bus cycles that must be performed. It is a good idea to fill
all non-relevant or background data with random values or transac-
tions.

More than just the expected response, the testcase specification
must state how the response will be determined as valid. This
includes expected values, timing and protocol. For example, the
output of a packet processor could be determined as correct solely
on the basis of the destination address matching the output port
where it appeared. Or, a more stringent requirement could be speci-
fied, such as packets from different sources showing up in the
proper order and interleaved with a proper distribution.

One of the more explicit ways of describing acceptance criteria is to
state exactly which errors to look for. For example, making sure
that a packet comes out with a correct CRC value. Another example
is to describe events that are mutually exclusive, such as the asser-
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Inject ertors to
make sure they are
detected.

tion of the full and empty flags in a FIFQ. Being explicit about what
errors to lock for lets a verification engineer, who is not intimately
familiar with the design, implement a highly reliable testbench.

Never trust a testbench that does not produce error messages. Every
testcase should include some error injection mechanism to make
sure that errors are detected and reported by the testbench. The
absence of an error message would be a failure condition for that
testcase. For example, a testcase verifying the parity generation in a
UART should purposefully misconfigure the parity in the UART to
make sure that the testbench detects a wrong parity. Of course, the
testbench must not abort the simulation as soon as the error mes-
sage is issued.

From Testcases to Testhbenches

Testcases natu-
raily fall into
groups.

Group tesicases
into testbenches.

Cross-reference
testbenches with
testcases,

Just like features, testcases naturally fall into groups. They require a
similar configuration of the design, use the same abstraction level
for the stimulus and response, generate similar stimulus, determine
the validity of the response using a similar strategy, or verify
closely-related features. For example, the testcase verifying that a
UART properly transmits data can be grouped with the testcase that
verifies its configuration controls. Both need similar stimulus (a
variety of data words to transmit), and both verify the correctness of
the output in a similar fashion (is the data value identical, with no
parity error),

Each group of testcases is then divided into testbenches. A popular
division, the one used in this book, is one testcase per testbench.
The minimization of Verilog compilation time, or the time spent
back-annotating a large gate-level netlist with a correspondingly
large Standard Delay File (SDF) may dictate that a minimum num-
ber of testbenches be created by grouping several testcases into a
single testbench.

Each testbench should be labeled and uniquely identified. This
identifier should be used as the filename where the top-level code
for the testbench is implemented. For each testbench, enumerate the
list of testcases it implements. Then cross-reference each testbench
into the testcase list. The description of a testcase should contain
the name of the testbench where it is implemented. If a testbench is
not identified, a testcase has not yet been implemented.
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Allocate each
group to an engi-
neer,

Regardless of the division of testcases into testbenches, allocate
each group of testcases to a verification engineer. Testcases in the
same group have similar implementation requirements. They can
build on the implementation of previous testcases in the group. The
first testbench takes the longest to write. But as engineers responsi-
ble for each testcase group gain experience and debug their verifi-
cation infrastructure, a lot can be reused, often through cut-and-
paste, in subsequent testbenches. The name of the individual to
whom a testbench has been assigned should be recorded in the veri-
fication plan. That person is responsible for implementing the test-
bench according to its specification.

Verifying Testhenches

How do you verify
that testbenches
implement the ver-
ification plan?

Verify testbenches
through peer
reviews.

Use functional
coverage.

The purpose of the verification effort and writing testbenches is to
verify that a design meets its specification. If the verification plan is
the specification for the verification effort, how do you verify that
the testbenches implement their specification? How can you pre-
vent a significant portion of a testcase from being skipped because
of human error? Testbenches often include temporary code struc-
tures to bypass large sections to speed up the debugging of a critical

" section. How can you make sure that they are taken out, returning

the testbench to implementing the entire set of testcases it is sup-
posed to contain?

As described in “The Human Factor” on page 6, one way to verify a
transformation performed by a human (in this case, writing a test-
bench from a specification), is to provide redundancy. Once com-
pleted, testbenches should be reviewed by other verification
engineers to ensure that they implement the specification of the
testcases they contain. For more details, refer to section “Code
Reviews” on page 32. The simulation output log should also be
reviewed to ensure that the execution of the testbench follows the
specification as well. To that effect, the testbench should produce
regular notice messages. It should state what stimulus is about to be
generated, and what error or respense is being checked. The output
log should ultimately contain, in a bullet form, the specification of
the testcases that have been executed.

Another redundant path is functional coverage measurement. By
specifying, through a functional coverage model, what you expect a
directed testcase to accomplish, you can obtain a positive confirma-
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tion that the testcase was indeed executed. After a directed test-
bench is run, the functional coverage metrics should meet 100% of
the goal. Since the stimulus was manually coded, it is deterministic
and should fill 100% of the relevant and interesting value sets. For
example, a directed tesicase that is supposed to iterate through all
possible values for a particnlar configuration register can be cov-
ered by recording all values written to the address corresponding to
that configuration register.

Measuring Progress

Testcase comple-
tion measures
progress.

Figure 3-5.

Progress of a
directed
testbench
approach

When are you
done?

In a directed testbench approach, progress is measured using a sim-
ple table. On one dimension, all of the testcases are listed. On the
other, the current status of each testcase is tracked throughout its
lifetime: assigned, coded, running, passing, reviewed. Figure 3-5
shows the progress of a directed testbench approsch. Initially, little
progress is made because the verification infrastructure is being
developed and the design is being debugged. Once the first testcase
completes successfully, the progress will accelerate as less and less
bugs remain to be found, and more and more verification infrastruc-
ture code is reused. This acceleration may not translate into an
accelerated testcase completion rate as testcases become increas-
ingly complex to implement.

»
»

106%

% of Completed Testcases

I

Time

The completion of all testcases does not necessarily indicate that
the verification task is over. Code coverage metrics can indicate
that the original set of testcases is not as thorough as imagined and
additional testcases must be created to increase the code coverage
scores to more acceptable levels. In reality, “done” is usually
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defined when you have to ship the design and you are confident
enough that the must-have features are working properly.

COVERAGE-DRIVEN RANDOM-BASED APPROACH

Random verifica-
tion still provides
valid stimulus.

The HVL productivity cycle (*Verification Languages” on page 62)
rests on constrained random verification. You can use HVLs to
implement a directed testcase approach as described in the previous
section, Their high-level programming language constructs would
facilitate the implementation of testcases. In fact, the HVLs with
lesser support for functional coverage and constrained random gen-
eration are designed for that purpose. However, it would only
increase the slope of the testcase completion curve somewhat
(Figure 3-5), not alter the nature of the curve. Changing the curve
itself requires changing how verification is approached.

Random verification does not mean that you randomly apply zeroes
and ones to every input signal in the design. This would not repre-
sent an accurate usage of the design and would not accomplish any-
thing. With random verification, the inputs are subjected to valid
individual operations, such as a read cycle or an ethernet packet. It

" is the sequence and timing of these operations and the content of

the data transferred that is random. Through the addition of con-
straints, a random testbench can be steered toward exercising spe-
cific features.

Measuring Progress

There are too
many testcases.

Testcases exercise
more than the tar-
get feature.

Today’s multi-million gate ASICs contain hundreds of features to
be verified for hundreds of different combinations of data values.
Assuming a bug-free design and a team of highly productive engi-
neers who can code and debug a self-checking testbench in three
days, a team of 10 verification engineers (a rarity by today’s stan-
dards) would require over seven months to implement 500
testcases. The number of testcases cannot be reduced. Throwing
more engincers at the problem quickly produces diminishing
returns. The only way to reduce the verification time is to write
more testcases in less time. In other words, exercise the same func-
tionality with less code.

Although each testbench, when verifying a testcase, considers the
target feature in isolation, applying stimulus to the design exercises
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Measure func-
tional coverage,
not features,

Figure 3-6.

Progress of a
coverage-
driven
testbench
approach

You will develop
more confidence.

other features at the same time. Since progress, in a directed
approach, is tracked by associating features with testbenches, how
can you track progress against features that are not explicitly coded
and verified in a testbench?

The solution is to measure progress against functional coverage
points that will identify whether a feature has been exercised, The
objective becomes filling a functional coverage model of your
design rather than writing a series of testcases. You could fill this
coverage model using large directed testbenches. Or you could let a
random testbench create the testcases and exercise the features for
you. Figure 3-6 shows progress using a coverage-driven approach
with a random testbench against the traditional directed approach.
The former trades-off longer initial testbench development time for
more productive feature coverage in the long run. The promised
ultimate productivity gain should not be measured on this qualita-
tive plot: It depends highly on your commitment to this approach,
and your experience in writing random generators that can be con-
strained easily (“Random Stimulus™ on page 354).
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Directed testcases can only find bugs you were locking for. Ran-
dom simulations will create conditions that you have not thought of
when writing your verification plan. They create unexpected condi-
tions or hit corner cases. They also reduce the bias introduced by
the verification engineer when coding directed testbenches. Instead
of creating input sequences that are easy or familiar to code, they
create more realistic stimulus. Because your design will have been
exercised under a larger number of conditions (compared to a
directed approach during the same time period), the overall quality
of the design will be higher.
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Coverage-Driven Random-Based Approach

This approach
requires commit-
ment.

Using a constraint-driven approach requires commitment. Under
pressure, it is too easy to fall back to writing directed testcases. A
critical component of this approach is that you need to simulate
your testbench and your design to know how much functional cov-
erage you have achieved. If the RTL model is not available on time
(and it never is), how can you debug your self-checking random
testbench? How can you show that the verification team is making
progress towards its functional coverage goals? The easy answer is
to start writing testcases as directed pseudo-random testbenches
that implicitly fill functional coverage points. That puts you back
on the staircase curve. A better approach is to stage the RTL deliv-
ery to enable simulations as early as possible and to use behavioral
models. For more details on behavioral models, see “Behavioral
Models” on page 375.

From Features to Functional Coverage

Start with func-
tional coverage.

Measure symp-
toms of data indic-
ative of feature.

Define your goal.

In a coverage-driven approach, functional coverage measurement is
used to identify which testcases were executed instead of explicitly
coding those testcases. Thus, it is important to implement func-
tional coverage models and collect functional coverage measure-

" ment right from the start. Functional coverage is not like code

coverage. The latter is often added to the verification process
toward the end to measure how thoroughly the code is being exer-
cised and to identify implementation code that was not exercised.
Functional coverage is used from the beginning of the project to
record which testcases and conditions were automatically created
by the random generator. If you are not using functional coverage in
tandem with your random environment, I'm afraid you are only
doing directed testcases with random stimulus filling.

Each feature presents a charactetistic or symptom in the input data
stream, the design configuration or the internal state of the design
that must be exercised. Functional coverage must identify, then
record, those characteristics and symptoms. Sample 3-4 shows a
description of the functional coverage items used to identify that
the interface-based features identified in Sample 3-1 have been
exercised.

The functional coverage tool can help you measure your progress
only if your goals are explicitly defined. It will also make analysis
of the functional coverage easier. The progress will be measured
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Sample 3-4,

Functional
coverage for
interfaced-
based features
of a UART
design

Sample 3-5.

Functional
coverage goals
for interfaced-
based features
of a UART
design

Understand the
complexity of the
goal.

Level of the Clear-to-Send (CTS) pin.

Level of the Data-Ready (DTR) pin.

CPU cycle kind crossed with address.

CPU cycle kind transition.

CPU cycle kind crossed with address crossed with data.

N

a.gainst a constant goal. If the goals are intellectually defined every
tlmfz you analyze a functional coverage report, then these goals are
subject to human etror. There will also be a tendency to minimize
the importance of holes toward the end of the project as you sub-
consciously justify your progress against the looming deadline.
Sample 3-5 describes the functional coverage goals for each of the
functional coverage points identified in Sample 3-4. Different fea-
tures may use the same coverage point but imply a broader goal.

A least one value of 0 and 1 observed.

At least one value of 0 and 1 observed.

At least one read and write cycle with address greater 4,
All combination of read and write cycles.

S

At least one read and write cycle for each address equal to

configuration register and with individual bits equal to
(O and 1,

Don’t make your goal more accurate or precise that it needs to be,
The more value sets that must be filled to meet your goal, the more
work it is going to be. With cross-coverage, the number of values
.th:?t must be filled grows exponentially. For example, it is not real-
istic to attempt to cover all possible values for a 32-bit address for
both read and write cycles: That is over 8 billion values. Define
value sets for equivalent values or combination of values to mini-
mize the number of samples required to meet your goal. Functional
coverage tools have a limit on the total number of value sets that
must be filled to provide a measure of the coverage. For example,
Specman Elite will give you a percentage score of your functional
coverage space, if and only if, the goal has a maximum of 16 value
sets to be filled®. ’
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Question, reduce,
inform.

Functional cover-
age definition is an
evolving art.

Tt is very easy to collect a large number of functional coverage met-
rics. But the more functional coverage data you have, the harder it
becomes to analyze the results. Always question the relevance of a
functional coverage point. If you start to ignore some coverage
point reports or are not looking forward to the next report, you
should probably not collect it. There is a fundamental difference
between data and information. Haphazard functional coverage
points only provide data that must be analyzed. Well-chosen func-
tional coverage points with well-defined goals provide information
that is immediately meaningful. For example, if a FIFO must be
exercised across its operating range, measuring the values of the
read and write pointers would be data. Measuring the difference
between the read and write pointers with goals stated as empty, full
and neither would be much more meaningful. Crossed with some
critical pointer regions (such as roll-over points), this latter func-
tional coverage point will provide much more relevant information.

Developing a good functional coverage model of your verification
plan is not easy. This section has described the necessary steps only
in the broadest of terms. Functional coverage modeling is a topic
that ean and should be developed into a science with well-defined
processes. It would require a book onto itself!

From Features to Testbench

Identify how cor-
rectness will be
determined.

Note that the functional coverage points described above do not
make any reference to the correctness of the results. Correctness is
the responsibility of the self-checking portion of the testbench.
Given the features that must be verified, you have to determine how
its correctness is going to be confirmed. The process is similar to
identifying the expected response in a directed testcase exercising
that feature. The difference is that you do not know the timing or
ordering of the stimulus that will trigger the feature. Errors can be
detected by a failure of the random testbench to operate properly,
by explicitly comparing output data against expected data in the
self-ckecking structure, or white-box assertions on the design itself.
The list of error detection mechanisms becomes a detailed specifi-
cation of the self-checking random testbench. Sample 3-6 shows

6. That number is configurable. This is the defauit value.
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Sample 3-6,

Errordetection
for interfaced-
based features
of a UART
design

Identify termina-
tion mechanisms.

You can run for a
leng time, or you
€an run many
times,

the error detection mechanism that will confirm the correctness of
the features identified in Sample 3-1.

1. Data source will wait for Clear-to-Send (CTS) pin to be
asserted before writing the next data to send. If it is not func-
tional, no data will be transmitted,

2. Data sink will wait for the Data-Terminal-Ready (DTR) pin
to be asserted before reading the next received data. If it is
not asserted, no data will be received.

Covered by #4.

4. Verify that read cycles return expected values given the pre-
vious values written, writability of bits and reset value, size
and presence of registers.

5. Covered by #4.

It is easy to terminate a directed testcase: Once you are done apply-
ing the stimulus necessary to exercise the target feature, exit from
the simulator. But a random testbench is not about exercising a sin-
gle feature. How do you know when to stop? You have to plan for
several termination mechanisms that can be triggered or turned off
through additional constraints on the random testhench or a simple
procedural call at the beginning of a simulation run. Any one termi-
nation mechanism, once triggered will cause the orderly shutdown
of the simulation.

There are several popuiar termination mechanisms. A watchdog
timer is useful to prevent deadlocked simulations: Tt must be reset
at regular interval, otherwise the simulation is terminated. A time
bomb helps prevent run-away simulations: Tt will terminate the
simulation after a predetermined amount of time. An idle detector
will stop the simulation when all of the output interfaces have been
idle for some time. A simple data item counter will terminate the
simulation after a specified number of data items was sent to or
received from the design. Functional coverage feedback can termi-
nate the sirulation if the metrics are not significantly increasing or
if the coverage goal has been reached.

You can generate a lot of random data using two strategies: You can
run a random source for a long time, or you can run a random
source many times, for a short time, each time with a different seed.
If the random source is truly random and the seeds are chosen as
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Plan for many
short runs.

not to repeat a previous sequence, then the quality of the resulting
random data should be the same. However, the effects on a simula-
tion of each strategy are quite different.

A long simulation will be cumbersome to reproduce if the error is
detected toward the end. Furthermore, since a single simulation run
will typically use a single configuration of the device, you will heEve
less opportunities to verify different configurations. Your device
may alsc find itself in a particular corner of the state space and
remain in that corner. Contimiing to apply more stimulus under
those conditions is unlikely to yield increased functional coverage.

Using the many-short-runs strategy, you can reproduce a problem
more quickly, run many more configurations and quickly traverse
the state space. Since HVLs are separate from Verilog and VHDL,
it is not necessary to recompile the design to run a different simula-
tion. If your device requires a lot of simulation cycles to reach cer-
tain states after reset, consider state-forcing mechanisms as
described in “Design for Verification™ on page 102.

From Features to Generators

Identify stimulus
requirements.

To be able to fill your coverage goals, it will be necessary for the
random generators to generate the necessary data, with the neces-
sary characteristics and necessary timing. It is very simple to gener-
ate a single packet or instruction with random contei?t. Bl-.lt this
simple random generation approach is likely insufficient if you
need the ability to generate packets of different lengths, lots of con-
secutive packets of the same lengths, straight-through instruction
sequences, nested loop structures, invalid or corrupted data or syn-
chronized data across multiple random streams.

A random generator that will be able to exercise the required fez‘1—
tures does not happen by accident. It has to be designed and archi-
tected to produce the required data sequences. Sample 3-7 shows
the random generator requirements necessary to exercise the fea-
tures identified in Sample 3-1.
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Sample 3-7.

Generator
requirements
for interfaced-
based features
of a UART
design

Constraints
become preferable
to more seeds.

Identify constrain-
able dimensions.

Generate send data stream.
Generate receive data stream.
Generate read or write cycles.
Covered by #3.

Covered by #3.

U

What if, after multiple random simulations, some of your functional
coverage points remain unfilled? You could run more simulations
with additional seeds, or you could add constraints to your test-
bench to increase the probability (hopefully to 100%) of filling at
least one of the remaining functional coverage points. The latter,
although requiring more work on your part, is likely to be the more
productive avenue, especially if hundreds of previous runs failed to
produce the necessary inputs to fill those coverage points. The gap
in your functional coverage measurements could also be a symptom
of a functional problem in your random generators or verification
environment. It is possible that a lingering constraint is preventing
the generation of input sequences that will cause the functional cov-
erage points to be filled.

When architecting your random generator, it is necessary to con-
sider the available constraint mechanisms. Traditionally, different
random streams were produced by physically altering the code of
the random generator. As shown in Figure 3-7, altering the code of
the random generator effectively created a different random genera-
tor for each testbench.

Figure 3-7.

Different 3 .

random Random | | Bus Functional % Design Under

generators Generator Model 4—p| Verification |
To minimize the amount of duplicated code and the amount of new
code that must be written to fill additional functional coverage
points {and thus to be more productive), it is better to design a ran-
dom generator that can be constrained easily, from the ontside, as
illustrated in Figure 3-8. Writing a random generator that can be
constrained easily from the outside does not happen by accident.
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Figure 3-8,

Constraining a
single random
generator

Sample 3-8.

Constraint
requirements
for interfaced-
based features
of a UART
design

Randomly gener-
ate the device or
testbench confign-
tation,

The section titled “Random Stimulus” on page 354 shows how to
write such generators. Sample 3-8 shows the constraint mecha-
nisms that must be available in the generators to exercise the fea-
tures in Sample 3-1.

h 4

Random Bus Functional
Generator Model

F

Constraints @

No constraints.

Design Under
Verification

v

y

Ad

No constraints.
Must be able to constrain address.

Eal A

Must be able to constrain type of cycle in sequences of
cycles.

5. Must be able to constrain address and data.

It is easy to conceive of randomly generating data streams throngh-
out a simulation. But you can just as easily randomly generate data
that is used only once, at the beginning of the simulation. For exam-
ple, configurable or programmable devices are often verified using
only a few configurations hard-coded in the testbench or an exter-
nal file. And most simulations are usually run using one of those
configurations.

Why not randomly generate the device configuration then down-
load it into the device? The device configuration descriptor is then
used by the self-checking structure to predict the response accord-
ing to the current configuration, Similarly, you could randomly gen-
erate the configuration of the testbench. For example, when
verifying an ethernet switch, why not randomly generate the num-
ber of devices on each port, their speed and their station MAC
addresses? Then use functional coverage measurement on the ran-
domly generated configuration to know which configurations and
combinations of configuration parameters were verified.
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Constrain configu-
rations if neces-

sary.

Your self-checking structure does not yet support all possible
device configurations? Or, you are unable to “compile” all possible
configuration into register writes? Or, you are migrating from a
Verilog testbench that can use only two configurations through
Sreadmemh tasks? No problem. Simply constrain the configuration
generator to generate only the supported configurations. Once you
are able to support additional configurations, remove the con-
straints accordingly.

Directed Testcases

Identify low-prob-
ability testcases.

May be imple-
mented using con-
straints.

The first testcases
are the simplest
but also the tough-
est,

There are some features that will have a low probability of being
exercised through random stimulus. For example, verifying that
interrupt bits are maskable would require that the mask bits be ran-
domly set to 1 and 0 while the associated interrupt bits were 1 and 0
(i.e., fill the cross-coverage of the interrupt bit value with the mask
bit value, for all interrupt bits). Given that interrupts usually signal
exceptional events in a design, it will likely take a very long time
for random stimulus to completely verify this feature. These fea-
tures a probably better verified vsing directed testcases.

Writing a directed testcase does not necessarily imply using a
directed procedural implementation. If the random generators were
designed to be highly constrainable, it is possible to constrain them
so much that they will produce directed stimulus. For example, to
verify the maskability of a particular interrupt, you would constrain
the CPU cycle generator to write a O then a 1 in the appropriate
position at the interrupt mask register address. You would then con-
strain the data generators to cause the interrupt condition. Once the
condition is detected, constrain the CPU cycle generator to write a 0
and 1 in the mask bit again. An assertion would verify that the
external interrupt would be asserted only when the interrupt condi-
tion is not masked. However, if the most productive approach is to
write a directed procedural testcase, the random environment can
be suspended to allow access to the transaction layer of the bus-
functional model.

When a new version of the design first hits the verification team, it
is subjected to a few simple testcases. The objective of these
testcases is to verify that the basic functionality of the design oper-
ates correctly. Once it passes these initial debug tests, it will be sub-
Jjected to high volumes of traffic to thoroughly verify the design.
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Debug testcases
can be random.

These first debug testcases, although very simple, are the toughest
ones to pass. You may spend weeks running the same simple tests.
Because they are used on immature code, they catch the most bugs.
These early debug testcases usually involve performing a write

~ cycle followed by a read cycle, or transmitting a single packet,or

executing a few straight-through instructions.

Because of their simplicity, you could be tempted to write the first
debug testcases as directed testcases. Given well-designed genera-
tors, they are usually much simpler to write as constrained tests. For
example, cqnstraining the test to two cycles, where the first one
must be a write cycle, the second must be a read cycle and both
addresses must be the same. Or, constrain the packet generator to
generating only one packet for the entire simulation. Alternatively,
constrain the instruction generator to generate only arithmetic
opcodes without any branches. Once the initial debug tests pass
successfully, you remove these constraints and let the random envi-
ronment loose on the design.
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SUMMARY

Write a verification plan. It is the specification for all testcases and
supporting testbench functions. Implement and verify from a com-
mon specification. Do not verify an implementation.

Define the various levels of granularity used to verify the design:
block, unit, component, FPGA, ASIC, subsystem, board, Trade off
fcr,reatr:r visibility and controllability for fewer testbenches and more
integration tests.

Define the self-checking strategy that will be used to detect errors.

Ideptify features from the design specification, and enumerate
which features must be verified.

Consider verification early in the design phase. Archite'ct the design
as needed to make it as easy to verify as possible.

You can use a directed testbench approach if the number of
testcases is small. For each feature, specify a testcase. Implement
each testcase in a separate testbench.,

Define a functional coverage model from the enumerated features.
From those same features, identify the degrees of freedom and con-
straint dimensions of the generators required to generate the stimu-
lus that will exercise each feature.
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CHAPTER 4

HIGH-LEVEL MODELING

A skilled verification engineer must break the “RTL mindset” that
most hardware engineers, out of necessity, have grown into. To effi-
ciently accomplish the verification task, you must be well versed in
behavioral (i.c., non-synthesizeable and highly algorithmic)
descriptions. To reliably and correctly use the behavioral constructs

“of any modeling language, it is necessary to understand the side

effects of the simulation algorithm and the limitations of the lan-
guage—and to understand ways to circumvent those side effects
and limitations. This understanding was not required to write RTL
models successtully.

BEHAVIORAL VERSUS RTL THINKING

Many guide;
lines help code
RTL models.

In this section, I illustrate the differences between the approaches to
writing an RTL model and to writing a behavioral model.

All experienced hardware design engineers are very comfortable
with writing synthesizeable models. The models conform to a well-
defined subset of the VHDL or Verilog languages and follow one of
a few coding styles. Numerous RTL coding guidelines have been

published.1 They help designers obtain efficient implementations:
low area, high speed or low power. Guidelines, such as the ones
shown in Sample 4-1, can help a novice designer avoid undesirable
hardware components, such as latches, internal buses or tristate
buffers. More importantly, guidelines can help maintain identical
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SUMMARY

Write a verification plan. It is the specification for all testcases and
supporting testbench functions. Implement and verify from a com-
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block, unit, component, FPGA, ASIC, subsystem, board. Trade off
greater visibility and controllability for fewer testbenches and more
integration tests.

Define the self-checking strategy that will be used to detect errors.

Identify features from the design specification, and enumerate
which features must be verified.

Consider verification early in the design phase. Architect the design
as needed to make it as easy to verify as possible.

You can use a directed testbench approach if the number of
testcases is small, For each feature, specify a testcase. Implement
each testcase in a separate testbench.

Define a functional coverage model from the enumerated features.
From those same features, identify the degrees of freedom and con-
straint dimensions of the generators required to generate the stimu-
lus that will exercise each feature.
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CHAPTER 4

HIGH-LEVEL MODELING

A skilled verification engineer must break the “RTL mindset” that
most hardware engineers, out of necessity, have grown into. To effi-
ciently accomplish the verification task, you must be well versed in
behavioral (i.e., non-synthesizeable and highly algorithmic)
descriptions. To reliably and correctly use the behavioral constructs

-of any modeling language, it is necessary to understand the side

effects of the simulation algorithm and the limitations of the lan-
guage—and to understand ways to circumvent those side effects
and limitations. This understanding was not required to write RTL
models successfully.

BEHAVIORAL VERSUS RTL THINKING

Many guide-
lines help code
RTL models.

In this section, I illustrate the differences between the approaches to
writing an RTL model and to writing a behavioral model.

All experienced hardware design engineers arc very comfortable
with writing synthesizeable models. The models conform to a well-
defined subset of the VHDL or Verilog languages and follow one of
a few coding styles. Numerous RTL coding guidelines have been

published.1 They help designers obtain efficient implementations:
low area, high speed or low power. Guidelines, such as the ones
shown in Sample 4-1, can help a novice designer avoid undesirable
hardware components, such as latches, internal buses or tristate
buffers. More importantly, guidelines can help maintain identical
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Sample 4-1.

RTL coding
guidelines to
avoid undesir-
able hardware
structures

Sample 4-2,

RTL coding
guidelines to
maintain simu-

lation behavior

Do not use RTL-
like code when
writing test-
benches.

behavior between the synthesizeable model and the gate-level
implementation, such as the ones shown in Sample 4-2.

1. To avoid latches, set all outputs of combinatorial blocks to
default values at the beginning of the block.

2. To avoid internal buses, do not assign regs from two separate
always blocks (Verilog only).

3. To avoid tristate buffers, do not assign the value Z (VHDL)
or 1'bz (Verilog).

1. All inputs must be listed in the sensitivity list of a combinato-
rial block.

2. The clock and asynchronous reset must be in the sensitivity
list of a sequential block.

3. Use a nonblocking assignment when assigning to a reg
intended to be inferred as a flip-flop (Verilog only).

The adherence to the synthesizeable subset and proper coding
guidelines can be verified easily using a linting tool (more details
are in the section titled "Linting Tools" on page 26). After several
months of experience, the subset becomes very natural to hardware
designers. It matches their mental model of a hardware design: state
machines, operators, multiplexers, decoders, latches and clocks etc.

The synthesizeable subset is adequate for describing the implemen-
tation of a particular design. I often claim that VHDL and Verilog
are both equally poor at this task. The subset is dictated by the syn-
thesis technology, not by someone with a warped sense of humor
playing a practical joke on the entire industry. It is designed to
describe hardware structures and logical transformations between
registers, matching the capability of logic synthesis technology.

1. The IEEE has published standard definitions for RTL coding.

For Verilog, see “IEEE P1364.1 Standard for Verilog Register Transfer
Level Synthesis” prepared by the Verilog Synthesis Interoperability
Working Group of the Design Automation Standards Committee,

For VHDL, see “IEEE P1076.6 Standard for VHDL Register Transfer
Level Synthesis” prepared by the VHDL Synthesis Interoperability
Working Group of the Design Automation Standards Committee.
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Behavioral versus RTL Thinking

However, this subset quickly becomes insufficient when writing
testbenches that were never intended to be implemented in hard-
ware. HDL and HVL languages have a rich set of constructs and
statements. If you have an RTL mindset when writing testbenches
and limit yourself to using a coding style designed to describe rela-
tively low-level hardware structures, you will not take full a‘dvan~
tage of the language’s power. The verification task will be
needlessly tedious and complicated.

Contrasting the Approaches

Figure 4-1.
State diagram

for
handshaking
protocol

Focus on behay-
ior, not implemen-
tation.

The example below shows a simple handshaking protocol. Your
task is to write the VHDL or Verilog code that implements the sim-
ple handshaking protocol shown in Figure 4-1. The protocol detects
that an acknowledge signal (ACK) is asserted (high) after a request-
ing signal (REQ) is asserted (high). Once the acknowledge signal is
detected, the requesting signal is deasserted, and the protocol then
waits for the acknowledge signal to be deasserted.

ACK==0

ACK==1

ACK==0

RTL-Thinking Example. A hardware designer, with an RTL
mindset, will immediately implement the state machine shown in
Figure 4-1. The corresponding VHDL code is shown in Sample 4-
3. This relatively simple behavior required 28 lines of code and_two
processes to describe, and two additional states in a potentially
more complex state machine.

Behavioral-Thinking Example. A verification engineer, with a
behavioral mindset, will instead focus on the behavior of the proto-
col, not its implementation as a state machine. The corresponding
cade is shown in Sample 4-4. The functionality can be described
behaviorally using only four statements.
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T T type STATE_TYP is {..., MAKE_REQ
Sample 4-3 ; : s
it signal STATE, : ;
Synthemze— ‘ g NEXT_STATE: STATE_TYE;
able VHDL COMB: process (STATE, ACK)
code for sim- begin
ple handshak- NEXT_STATE <= STATE;
ing protocol case STATE is
when MAKE_REQ =»>
REQ <= "1°;
if ACK = "1’ then
NEXT STATE <= RELEASE;
end if;
when RELEASE =>
REQ <= ’'0’;
if ACK = ‘0’ then
NEXT_STATE «= ;
end if:
end case;
end process COMB;
SEQ: process (CLK)
begin
if CLK’'event and CILK = ‘1’ then
if RESET = ‘1’ then
STATE <= ...;
else
STATE <= NEXT STATE;
end if;
end if;
end process SEQ;
I — rocess
Sample 4-4. gegin
Behavioral .
VHDL code REQ <= “17;
for simple o owntil
- walt un = ‘17
handshaklng REQ <= tl:é];.ACK T
protocol wait until ACK = ‘0°;
end process;
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You Gotta Have Style!

Behavioral mod-
els are faster to
write.

Behavioral mod-
els simulate faster.

Modeling this simple protocol using behavioral constructs should
require less than 10% of the time required to model it using synthe-
sizeable constructs. Not only is there less code to write (14%). but
also it is simpler, requiring less effort to ensure that it is correct.

Another benefit of behavioral modeling is the increase in simula-
tion performance. Assuming that there is a long delay between a
change in the request and the corresponding acknowledgement, the
simulation of the synthesizeable model would still execute the SEQ
process at every transition of the clock (because that process is sen-
sitive to the clock signal). The process containing the behavioral
description would wait for the proper condition of the acknowledge
signal, resuming execution only when the protocol is satisfied. If
the acknowledge signal replies after a 10 clock-cycle delay, this
represents a reduction of process execution from 40 in the synthe-
sizeable version to 2 in the behavioral one, or a 1900% increase in
simulation performance.

YOU GOTTA HAVE STYLE!

Write maintain-
able, robust code.

The synthesizeable subset puts several constraints on the coding
style you may use. Even. with these restrictions, many less experi-
enced hardware designers manage to write RTL code that is diffi-
cult to understand and maintain. There are no such restrictions with
behavioral modeling. With this complete and thorough freedom, it
is not surprising that even experienced designers produce testbench
code that is unmaintainable, fragile and not portable.

A Question of Discipline

There are no laws against writing bad code. If you do, the conse-
quences do not involve personal fines or prison terms. However, the
consequences do involve a real economic cost to your employer.
Your code will need to be modified: either to fix a functional error,
to extend its functionality or to adapt it to a new design. When (not
if) your code needs to be modified, it will take the person in charge
of making that modification more time than would otherwise have
been required had the code been written properly the first time.
Under extreme conditions, your code may even have to be re-writ-

ten entirely.2

Writing Testbenches: Functional Verification of HDL Models 125



High-Level Modeling

Invest time now,
save support time
later.

My first job after graduating from the university was to design and
implement a portion of a logic synthesis tool using the C language.
In those days, I had been writing code in various languages for over
eight years, and I measured my performance as a software engineer
by the cleverness of my implementations of algorithms. I felt really
proud of myself when I was able to craft a complex computation

into a “poetic” one-liner. C is the ultimate software craftsman lan-
guage!

I'soon came to realize the error of my ways. During the eight previ-
ous years, I always wrote “disposable” code: The programs were
cither short-lived (school assignments or personal projects), or they
had a narrow audience (utilities for university professors or a learn-
ing aid for a particular class). Never had [ written a program that
would live for several years and be used by dozens of pérsons, each
with their own sophisticated needs and attempting to use my pro-
gram in ways I had never intended or even thought of, As I found
myself having to fix many problems reported by users, I had diffi-
culties understanding my own code written only weeks before. 1
quickly learned that time invested in writing better code up front
would be saved many times over in subsequent support efforts.

Optimize the Right Thing

Saving lines actu-
ally costs money.

You should always strive for maintainability. Maintainability is
important even when writing synthesizeable code. Before optimiz-
ing some aspect of your code, make sure it really needs improve-
ment. If your code meets all of its constraints, it does not need to be
optimized. Maintainability is the most important aspect of any code
you write because understanding and supporting code is the most
expensive activity.

There is no economic reason to reduce the number of lines of code.
Unless, of course, it also improves the maintainability. Saving one
line of code, with an average of 50 characters per line, saves only
50 bytes on the storage medium. With 40GB hard drives costing

less than $80 in 20023, this represents a savings of one hundred
thousandth of one cent ($0.00000001). The time saved in typing,

2. Do not think, “Jt won't be my problem.” You may very well be that per-
son and you may not be able to understand your own code weeks later.

3. 93% cheaper in the 3 years since the first edition of this book!
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Optimizing perfor-
mance costs
money.

RTL code can be
too close to sche-
matic capture.

Specify function
first, optimize
implementation
second—and only
if needed.

assuming an extremely slow typing speed of one character per sec-

ond and a loaded labor rate for an engineer at $100,000 a year4,
amounts to $0.69. However, if saving that line reduces the under-
standability of the code where it will require an additional five min-
utes to figure out its operation, the additional cost incurred amounts
to $4.17. The total loss from reducing code by one line equals
$3.48. And that is for a single line and a single instance of mainte-
nance.

Similar costs are incurred when optimizing code for performance.
These optimizations usually reduce maintainability and must be
done only when absolutely required. If the code meets its con-
straints as is, do not optimize it. That principle applies to synthe-
sizeable code as well. The example in Sample 4-5 is a design
example provided in the Vera distribution. It is a synthesizeable
description of a 2-bit round-robin arbiter.

Several aspects of maintainable code were used in Sample 4-5:
Identifiers are meaningful and the code is properly indented. How-
ever, the continuous assignment statements implementing the com-
binatorial decoding suggest that the author was thinking in terms of

‘Boolean equations, maybe even working from a schematic design,

not in terms of functionality of the design.

This approach simplifies the understanding of the final implemen-
tation at the cost of functional understanding. From each concurrent
statement, it is easy to figure out the logic gates and flip-flops nec-
essary to implemented it. But try to figure out what happens to the
content of the last_winner register when there are no requests, or
add a third request and grant signal pair. Understanding or modify-
ing the functionality is much more difficult. Other potential prob-
lems are the race conditions created by using the blocking
assignments in the a/ways block (for more details, see “Read/Write
Race Conditions™ on page 209).

The code shown in Sample 4-6 implements the same function, but it
is described with respect to its functionality, not its gate-level
implementation. The code sample simplifies the understanding of
the function but makes no attempt at describing the final implemen-
tation. It is much easier to figure out what happens to the content of

4. That, however, is pretty much the same...
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Sample 4-5,

Synthesize-
able code for
2-bit round-
robin arbiter

/‘k

FHFRF R R AR R R R R R R S a e
# PROPRIETARY AND CONFIDENIAL #
# SYSTEMS SCIENCE INC. #*

# COPYRIGHT (¢) 1395 BY SYSTEMS SCIENCE INC. #
R EE TR R T T R R R R R R A Y
*/

module rrarb (request, grant, reset, clk);
input [1:0] request;

output [1:0] grant;

input reset;
input c¢lk;

wire winner;

reg last_winner
reg [1L:0] grant;

wire [1:0] next_grant;

assign next_grant[0] =
~reset & (request[0] &
(~request[1l] | last_winner)):

assign next_grant[l] =
~reset & (request[l] &
(~request[0] | ~last_winner));

assign winner =
~reset & ~next_grant[0] &
(last_winner | next_grant[l]);

always @ (posedge clk)
begin
last_winner = winner;
grant = next_grant;
end
endmodule

the last_winner register when there are no requests or when adding
a new request and grant signal pair. The synthesized results should
be close to that of the previous model. The synthesized results
should not be a concern until it is demonstrated that the results do
not meet area, timing or power constraints. Your primary concern
should be maintainability, unless shown otherwise.
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Sample 4-6.

Behavioral
code for 2-bit
round-robin
arbiter

module rrarb{request, grant, reset, clk);
input [1:0] request;

output: [1:0] grant;

input raset;

input clk;

reg [1:0] grant;
reg last_winner;
always @ {(posedge clk)
begin
grant <= 2'b00;
if (reset) last_winner <= 0;
else begin
if {request != 2'b00) begin: find winner
reg winner;
case (request)
2'b01l: winner 0;
2'bl0: winner 1;
2'bll: winner = last_winner+l;
endcase
grant [winner] <= 1’bl;
last_winner <= winner;
end
end
end
endmodule

Good Comments Improve Maintainability

You can write bad
comments.

If reducing the number of lines of code actually increases the over-
all cost of a design, the same argument applies to comments. One
could argue that reducing the number of lines of code can yield a
better program, since there are fewer statements to understand and
debug. However, the primary purpose of comments is explicitly to
improve maintainability of code. No one can argue that reducing
their number can lead to better code.

However, just as there is bad code, there are bad comments. Obso-
lete or outdated comments are worse than no comments at all since
they create confusion. Comments that are cryptic or assume some
particular knowledge may not be very useful either. One of the most
common mistakes in commenting code, illustrated in Sample 4-7, is
to describe in written language what the code actually does.
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Sample 4-7,

Poor com-
ment in Open-
Vera

Sample 4-8.

Proper com-
ments in
OpenVera

Assume an inexpe-
rienced audience,

// Increment addr
addr++;

Unless you are trying to learn the langnage used to implement the
model, this comment is self-evident and redundant. Tt does not add
any information. Any reader familiar with the language would have
understood the functionality of the statement. Comments should
describe the intent and purpose of the code, as illustrated in Sample
4-8. It is information that is not readily available to someone unfa-
miliar with the design.

// In burst mode, the bytes are written in
// consecutive addresses. Need to access the
// next address to verify that the next byte
// was properly saved.

addr++;

When commenting code, you should assume that your audience is
composed of junior engineers who are familiar with the language,
but not with the design. Ideally, it should be possible to strip a file
of all of its source code and still understand its functionality based
on the comments alone.

STRUCTURE OF BEHAVIORAL CODE

RTL models
require a well-
defined structure
strategy.

This section describes techniques to structure and encapsulate
behavioral code for maximum maintainability. Encapsulation can
be used to hide implementation details and package reusable code
elements.

Structuring code is the process of allocating portions of the func-
tionality to different modules or entities. These modules or entities
are then connected together to provide the complete functionality of
the design. There are many guidelines covering the structure of syn-
thesizeable code. That structure has a direct impact on the ease of
meeting timing requirements. The structure of a synthesizeable
model is dictated by the limitations of the synthesis tools, often
with little regard to the functionality.
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Testbenches are
structured accord-
ing to functicnal
needs.

Table 4-1.
Available
constructs for
structuring
code

A testbench implemented using behavioral Verilog, VHDL, Open-
Vera and e code does not face similar tool restrictions. You are free
to structure your code any way you like. For maintainability rea-
sons, behavioral code is structured according to functionality or
need. If a function is particularly complex, it is easier to break it up
into smaller, easier to understand subfunctions. Or, if a function is
required more than once, it is easier to code and verify it separately.
Then you can use it as many times as necessary with little addi-
tional efforts. Table 4-1 shows the equivalent constructs available
in each language to help structure code appropriately.

VHDL.. -.[::i Verilog OpenVera e
Entity and Module Class Unit, Struct
architecture
Function Funetion Function Method
Procedure Task Task Method, TCM
Package and Module Class Unit, Struct
package body

Inheritance Inheritance
Aspect

Encapsulation Hides Implementation Details

Keep declarations
as local as possi-
ble.

Encapsulation is an application of the structuring principle. The
idea behind encapsulation is to hide implementation details and
decouple the usage of a function from its implementation. That
way, the implementation can be modified or optimized without
affecting the users, as long as the interface is not modified.

The simplest encapsulation technique is to keep declarations as
local as possible. This technique avoids accidental interactions with
another portion of the code where the declaration is also visible. A
common problem in Verilog is illustrated in Sample 4-%: Two
always blocks contain a for-loop statement using the register i as an
iterator. However, the declaration of i is global to both blocks. They
will interfere with each other’s execution and produce unexpected
results.
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————  integer i:
Sample 4-9.

Improper always
encapsulation  pegin
of'locall for (1 = 0; 4 <« 32; 1 =41 + 1) begin
_objects in Ver- ...
ilog end
end
always
begin

In Verilog, put
local declarations
in named blocks.

Sample 4-10.

Proper encap-
sulation of
local objects
in Verilog

Verilog tasks and
JSunctions can con-
tain local vari-
ables,

for (1 = 15; 1 »>= 0; 41 = 1 - 1) begin

end
end

In Verilog, you can declare registers local to a begin/end block if
the block is named. A proper way of encapsulating the declarations
of the iterators so they do not affect the module-level environment
is to declare them locally in each always block, as shown in Sample
4-10. Properly encapsulated, these local variables cannot be acci-
dentally accessible by other always or initial blocks and create
unexpected behavior.

always

begin: block_1
integer i;
for (i = 0; 1 <« 32; 1 = 1 + 1) begin
end

end

always
begin: block 2
integer i;
for (L = 15; 1 »= 0; 1 = 4 - 1) begin

end
end

Other locations where you can declare local registers in Verilog
include tasks and functions, after the declaration of their arsuments.
An example can be found in Sample 4-11. In VHDL, local variable
declarations can be located before any begin keyword.
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W task send;

ample 4-11. input [7:0] data:
Local declara- P

tions in tasks reg parity;

and functions  pegin

and
endtask

function [31:0] average:
input [31:0] vall;
input. [31:0] val2;

reg [32:0] sum;
begin

sum = vall + val2;

average = sum / 2;
end
endfunction

Minimize the In OpenVera, local variable declarations can be located after any

scope of local vari-  open brace. And since curly brackets can be located anywhere in

ables in OpenVera.  goqyential code to create local scope regions, local variables can be
created while minimizing their scope and potential undesirable
interaction. For example, Sample 4-12 shows how a local iterator
variable can be created in the middle of a long sequence of state-
ments by creating a local scope region.

——— — functicn bit mac_frame::compare (mac_frame to)
Sample 4-12. {

Local declara-

tions in Open- L

Vera if (this.data_len !== to.data_len) return;
{

compare = 0;

integer i;
for (i = 0; i < this.data_len; if++}) {
if {this.datali] !== to.datali])
return;

}

compare = 1;

)

In e, variable declarations can be located anywhere in sequential
code using the var action. Since declarations are actions (i.e.,
“sequential statements” in HDL parlance), they can be located any-

Declarations are
really actions in e.
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where in sequential code sections without requiring a new set of
enclosing braces. Declarations will remain visible until the end of
the current scope region,

Encapsulating Useful Subprograms

Example: error
reporting routines.

Tasks can be pack-
aged in a module
and used using a
hierarchical name.

Some functions and procedures are useful across an entire project
or between many testbenches. One possibility would be to replicate
them wherever they are needed. This obviously increases the
required maintenance effort. It also duplicates information that was
already captured. VHDL has packages to encapsulate any declara-
tion used in more than one entity or architecture. Verilog has no
such direct features, but it provides other mechanisms that can
serve a similar purpose. OpenVera has classes and ¢ has urits and
structs as encapsulating mechanisms for functions and procedures.

One example of procedures that are used by many testbenches are
the error reporting routines. To have a consistent error reporting
format (which can be parsed easily later to check the result of a
regression), a set of standard routines are used to issue messages
during simulation. In VHDL, they are implemented as procedures
in a package. In Verilog, they are implemented as tasks, with two
packaging alternatives. In OpenVera, they are implemented as tasks
in a class. In ¢, they are implemented as methods in a predefined
Struct.

Procedures are encapsuiated in a container object (todule without
pins in Verilog, class in OpenVera, struct or unit in e) that is then
instantiated in constructs that require them. A hierarchical name is
used to access the procedure in any encapsulating object instance.
The Verilog implementation, shown in Sample 4-13 and used in
Sample 4-14, can be compiled on its own since the tasks are con-
tained within a compilation unit. It is also possible te include local
variables, such as an error counter. Because all declarations are
static in Verilog (unless a task or a function is qualified as auto-
matic, see Sample 4-95), and because there is an instance of each
variable for each instance of the module, the state of the local vari-
ables will be maintained between invocation of the procedures.
This is not the case with VHDL where there is a single instance of
package variables and subprogram variables, which can have multi-
ple instances. These variables do not survive once the subprogram
has completed.
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Sample 4-13.

Packaging of
tasks in Ver-
ilog

Sample 4-14.

Using tasks
packaged
using a mod-
ule in Verilog

Put global vari-
ables in uninstanti-
ated module.

module syslod;

integer warnings;
integer errcrs;

initial
begin
warnings = 0;
errors = 0;
end

task warning:
input. [80*8:1] msg:

hegin
Swrite ("WARNING at %t: %s", msg);
warnings = warnings + 1;

end

endtask

endmodule
module testcase;

syslog log();

initial
begin

if (...} leg.error("Unexpected response");

log.terminate;
end
endmodule

In the usage example shown in Sample 4-14, there will be an
instance of error and warning counters for each instance of the
module. In this case, it would be preferable to have a single
instance of those counter values. This approach can be accom-
plished by locating them in an uninstantiated module and referring
to them using an absolute path as shown in Sample 4-15. Both mod-
ules are located in the same file to hide this implementation detail.
In VHDL, shared variables in the package can be used with a simi-
lar effect. ¢ has a similar requirement to Verilog: Global variables
must be added to the root sys struct.
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Sample 4-15.

Global vari-
ables in Ver-
ilog

This is basic
object-oriented
programming.

module syslog;

task warning;
input [80*8:11 msg;
begin
swrite("WARNING at %t: %s", msg):
syslog_globals.warnings =
syslog_globals.warnings + 1;
end
endtask

endmodule
module syslog globals;

integer errors;
integer warnings;

initial

begin
warnings
errors

mn

end

endmodule

Encapsulating procedures and the state variables they operate on in
the same object is the primary technique in object-oriented pro-
gramming. I am not claiming that Verilog is object-oriented. The
encapsulating module is not an object that can be assigned, copied
nor moved around. There is no concept of inheritance and polymor-
phism. These important object-oriented concepts, present in Open-
Vera and e, will be introduced in “Object-Oriented Programming”
on page 166. Sample 4-16 and Sample 4-17 show the same proce-
dures and state variables encapsulated in an object-oriented lan-
guage. Note how global variables can be created simply by using
the static attribute in OpenVera. Since this is a true object-oriented
programming language, it is necessary to allocate the object
instance explicitly using the new constructor.
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Sample 4-16.

Object-ori-
ented packag-
ing of tasks in
OpenVera

Sample 4-17.

Using tasks
packaged
using a class
in OpenVera

class syslog {

static integer warnings
static integer errors

task warning({string msg)
{
printf ("WARNING at %0d: %s",
get_time(L0O), msg);
this.warnings++;

}

program testcase

{
syslog log = new;
if (...) log.error('Unexpected response’);
log.terminate;

}

Encapsulating Bus-Functional Models

In VHDL, use pro-
cedures with sig-
nal arguments.

In Chapter 5, I describe how data applied to the design under verifi-
cation via complex waveforms and protocols can be implemented
using tasks or procedures. These subprograms, called bus-fitnc-
tional models, are typically used by many testbenches throughout a
project. If they model a standard interface, such as a PCI bus or a
Utopia interface, they can even be reused between different
projects. Properly packaging these subprograms facilitates their use
and distribution.

Figure 4-2 shows a block diagram of a bus-functional model. On
one side, it drives and samples low-level signals according to a pre-
defined protocol. On the other, subprograms are available to initiate
a transaction with the specified data values. The latter is called a
procedural interface.

In VHDL, the bus-functional model would be implemented using a
procedure located in a package. For the procedure to be able to
drive the interface signals, they must be passed through the proce-
dure’s interface as formals of class signal. I the procedure had been
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declared in a process, you could drive the signals directly using side
effects. It would have been possible in that context since the driver
on each signal is clearly identified with the process containing the
procedure declaration. Once put in a package, the signals are no
longer within the scope of the procedure, nor are the drivers within
the procedure attached to any process. Using signal-class formals
lets a process pass its signal drivers to the procedure for the dura-
tion of the transaction. Sample 4-18 shows an example of properly
packaged bus-functional models in VHDL.
————_ library icee;
%ample 41'1:; use ieee.numeric std.all;
ncapsulaing ackage body cpu is
bus-functional  * g Y ®
models in procedure write{variable wadd: in natural;
VHDL variable wdakt: in natural;
signal  addr: out  byte;
signal  data: inout byte;
signal rw : out std_logic;
gignal ale : out  std_legic;
signal wvald: in std_logic}
is
constant Tas: time = 10 ns;
begin
if vald /= ‘0’ then
walt until vald = '0'; .
end if;
addr <= std_logic_vector (unsigned(wadd, 8));
data <= std_logic_vector{unsigned{wdat, 8));
rw <= '0°;
wait for Tas;
ale <= '17";
walt until vald = *17;
ale <= ‘'07;
end write;
end cpu;
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Task arguments
are passed by
value only.

Sample 4-19.

Task argu-
ments in Ver-
tlog are passed
by value

Pass signals via
medule pins in
Verilog.

Pass signals via a
virtual port in
OpenVera.

In Verilog, you might be tempted to implement the bus-functional
model using a task where the low-level signals are passed to the
tasks, similar to VHDL’s procedure. However, Verilog arguments
are passed by value when the task is called and when it returns. At
no other time can a value flow into or out of a task via its interface.
For example, the task shown in Sample 4-19 would never work.
The assignment to the bus_rg variable cannot affect the outside
until the task returns. The task cannot return until the waif statement
sees that the bus_gt signal was asserted. But the value of bus_gt
cannot change from the value it had when the task was called.

module arbiter;

task reguest;
output bus_rg;
input bus_gt:

begin
// The new value does not "flow" out
bus_rg <= 1'bl;
// Aand changes do not "flow" in
wait bus_gt == 1'bl;

end

endtask

- endmodule

A simple modification to the packaging can work around the prob-
lem. Instead of passing the signals through the interface of the task,
they are passed through the interface of the module implementing
the package, as shown in Sample 4-20. This also simplifies calling
the bus-functional model tasks as the (potentially numerous) sig-
nals need not be enumerated on the argument list for every call.

OpenVera has an object designed specifically to represent signal
connectivity information: the virtual port. An entire signal bundle
belonging to a bus-functional model interface can be specified
using a single virtual port. It can contain signals from different
clock domains as well as asynchronous signals. Declaring a virtual
port creates a new user-defined data type, which can then be used to
declare variables and sub-program arguments that will refer to a
specific virtual port binding. Sample 4-21 shows a class packaging
bus-functional model procedure for an ethernet MII interface.
Notice how the virtual port is passed as an argument to the con-
structor and saved in a private data member instead of being passed
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Sample 4-20,

Signal inter-
face on Ver-
ilog package

Sample 4-21.

Virtual port
usage in
OpenVera

Use vrhfix on gen-

module arbiter (bus_rg, bus_gt);
output bus_rq;
input bus_gt;

task request;
begin
// The new value "flows" out through the pin
bus_rg <= 1'bl;
// BAnd changes "flow" in as well
walt bus_gt == 1°'bl;
end
endtask
endmodule

to each procedure. This approach ensures that a single instance of
the bus-functional model package operates on a single set of inter-
face signals, maintaining internal state variables belonging to that
one interface.

port eth mii {
tx_clk, txd, tx_en, rx clk, rxd, rx_dwv,
col, crs

}

class eth_mii {
local eth mii sigs;

task new{eth_mii sigs) {

this.sigs = sigs;

}

task send(mac_frame frame) {

}

function mac_frame receive(} {

}
1

There is one problem with the code in Sample 4-21; When com-

Structure of Behavioral Code

Sample 4-22,
Encapsulation
of virtual port

declaration

recommended

by Synopsys

Specify the port
binding when
instantiating the
bus-functional
class.

However, the generated header file, generated using either the -h or
-H{ command-line option, will not include the virtual port declara-
tion. The methodology recommended by Synopsys, as illustrated in
Sample 4-22, is to put the virtual port in a separate inferface file that
must be included wherever the virtual port definition is required. I
disagree: The virtual port definition is an integral part of a bus-
fonctional model definition and should be located in the same
encapsulation file and be part of the same header file, as illustrated

in Sample 4-23. The vrhfix Perl script5 will parse the original
source file and add any virtual port declaration it finds back into the
generated header file.

In eth_mii.vri:

port eth_mii {
tx_clk, txd, tx en, rx clk, rxd, rx dv,
col, crs

}

In eth_mii.vr:

#include *eth_mii.vri”

class eth_mii ({

)

In eth_mii.vrh (generated using “vera -cmp -H”):
#include “eth_mii.vri”

extern class eth_mii {

}

To create an instance of a bus-functional model, call its constructor.
Each instance will be connected to the port binding specified in that
instance’s constructor. Thus, different instances of the same object
can be connected to different interfaces. The binding may be static
(i.e., defined in the interface file) or dynamic (i.e., through the use
of the signal_cornect(} task). Sample 4-24 shows an example

erated header file.  pjled, the generated header file (also known as v file) will not
work. A heafier ?ﬁle n Open\(era is like a hez.lder file in C or a pack- 5. vrhfix fixes other limitations and methodology disagreements that will
age declaration in VHDL. It is supposed to include all of the exter- be discussed throughout the book. Some ideas from the original version
nal definitions required to use a class. By including a header file, I were included in the -H command-line option, but some problems
am supposed to satisfy the -compiler and have all of the syntax remain and others were CI:eat'ed. A!l Opchera examples will‘assume
information to instantiate a class and operate on those instances. the use of vrifax. This seript is available in the resources section of the

book’s website.
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Sample 4-23,

Encapsulation
of virtual port
declaration
using vrhfix

Sample 4-24.

Instantiating
bus-functional
model class in
OpenVera

Signals are
accessed using full
hierarchical names
ine.

In eth_mit.vr;

port eth_mii {
tx_clk, txd, tx_en, rx clk, rxd, rx_dv,
col, crs

}
class eth_mii {

}
In eth_mii.vrh (generated vsing “vera -cmp -h”, then vififix):

port eth_mii {
tx_clk, txd, tx_en, rx_clk, rxd, rx_dv,
col, crs

H

extern class eth_mii ({

}

instantiating two instances of the MII bus-functional model, each
connected to two different port bindings. Sample 4-24 uses static
port binding. Static binding should be preferred to dynamic port
binding because it allows optimization of the interface between
Vera and the HDL simulator that significantly improves perfor-
mance over dynamic binding. Note that the use of a single dynamic
binding in an Vera testbench will prevent static binding optimiza-
tion and overall simulation performance will be reduced.

tinclude “eth_mii.vrh”
#include “dut.vri” // Use static bindings
class testbench {

eth_mii bfml[];

task new() {
this.bfm[0] new(eth_mii_port_0);
[1] new(eth_mii_port_1};

this.bfm

}

e has no concept of ports. Instead, anytime you want (o access a sig-
nal in the Verilog or VHDL world, you simply refer to it by full
hierarchical name (e.g., ~top/core/mii/txd) anywhere the value of
the signal must be sampled or set.
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Pass signal [oca-
tion by name using
hdl_path{) in e.

Pass signal names
by name in string
variables in e.

These hardcoded HDL signal names create two problems.

+ First, the location of the interface signals in the design hierarchy
cannot change. A bus-functional model expecting the interface
signals to reside in the instance ~ftop/core/mii must be modified
to be used in a system-level environment, where the interface
signals are now located in the instance ~/top/sys/mii_core/mii.

* Second, the ultimate name of the interface signals cannot be
changed. A bus-functional model that refers to signal #xd_0 can-
not refer to signal fxd_J without creating a copy of the source
code and modifying the signals references.

The first problem is solved by using units instead of structs to
encapsulate bus-functional models. Units are like structs except
that they are static for the entire duration of the simulation. They
are created at initialization time and will be destroyed only at the
end of the simulation. Whereas struct instances can be dynamically
created and destroyed throughout the simulation, urits cannot. This
sounds like an unreasonable limitation until you realize that many
things in a design are static as well. For example, the number of
pins and interfaces on a design is static. A bus-functional model,
connected to these static pins and interfaces should be encapsulated
in a urit since it too should be static. Each unit can be associated
with a particular point in the design hierarchy. The path to that point
{for example ~/top/core/mii) is specified by the value of the
hdl_path(} pseudo-method. In a unit, any relative HDL reference
(i.e., that does not start with ~/) is assumed to be relative to that
unit’s hdl_path(). The hdl_path() is thus similar to a “current work-
ing directory” that you “cd” to and from which all relative reference
will be made.

The second problem can be fixed by using computed signal names.
Any portion of a HDL reference specified between parenthesis is
evaluated using the append() predefined function and inserted in
place of the original text, including the parenthesis. By using string
variables to hold a user-specified signal name, a bus-functional
model procedure can refer to the signal by “de-referencing” the
string variable, as shown in Sample 4-25. These computed signal
names, if ultimately relative, are interpreted relative to the unit’s
hdl_path(). The signal variables remain variables and potentially
can be modified at runtime so proper discipline is required. I
assume that static unit fields will be introduced in e in the not too
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Sample 4-25,

Packaging
bus-functional
model proce-
dures in e

Bind the signal
names using con-
straints.

Sample 4-26.

Instantiating a
bus-functional
model unit in e

distant future to prevent this problem and optimize the computation
of the HDL reference. Currently, all computed HDL references are
re-evaluated each time they are used and their result appended to
the hdi_path(). If static unit fields were available and used, Spec-
man Elite could pre-compute the HDL references at the beginning
of the simulation, similar to what it already does for non-computed
signal names, and improve simulation performance.

unit eth_mii {
tx_clk: string;
txd : string;

event tclk is rise(’(tx_clk)’) @sim;

sent (mac_frame frame) @tclk is {
if (*fers)’ 1= 1'b1) {

}:
f{txd)*r =
Yi
i

When instantiating a bus-functional model encapsulated in a unit, it
will be necessary to specify the location of the signals in the design
hierarchy and their names. This location specification is best
accomplished using constraints on each instance, as shown in Sam-
ple 4-26. If the bus-functional model interfaces to signals that tend
to have a well-accepted naming convention, it is a good idea to pro-
vide (and document!) defaunlt signal names in the bus-functional
model itself using soft constraints as shown in Sample 4-27. That
way, users will only need to provide bindings for the names that dif-
fer.

import eth_mii;

unit testbench {
bfm(2]): list of eth_mii is instance:
keep for each in bfm {
it.hdl_path() == append(”~/top.mii_*, index):;
it.tx_clk == #tx clk”;
it.txd == #tx_data”;

}i
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—— _— — unit eth_mii {
Saml?lq 4-27. tx_eclk: gtring;
Prov:dmg txd : string;
default signal .
name bind- keep soft tx_clk == “tx_clk”;
mgsine keep soft txd == “txd";
}i
DATA ABSTRACTION

Synthesizeable
models are Limited
to bits and vectors.

Work at the same
level as the design
under verification.

Abstracting datain
Verilog requires
creativity and dis-
cipline.

The limitation of logic synthesis technology has forced the synthe-
sizeable subset into dealing only with data formats that are clearly
implementable: bits, vectors of bits and integers. Behavioral code
hag no such restrictions. You are free to use any data representation
that fits your need.

You must be careful not to let an RTL mindset artificially limit your
choice, or to keep you from moving to a higher level of abstraction.
You should approach the verification problem at the same level of
granularity as the “unit of work™ for the design. For an ethernet
switch, it is a MAC frame. For an IP cell router, the unit of work is

-an entire IP packet. For a SONET framer, the unit of work is a

SONET frame. For a video compressor, the unit of work is either a
video line or an entire frame, depending on the granularity of the
compression. The interesting conditions and testcases are much
easier to set up at that level than at the low-level bit interface.

VHDL provides excellent support for abstracting data into high-
level representations. Verilog does not have as many features, but
with the proper technique and discipline, a lot can be accomplished.
The following sections use Verilog to illustrate how various data
abstractions can be implemented since it is the more limiting lan-
guage. Their implementations in VHDL are much easier and you

are invited to consult a book on the VHDL languageﬁ to learn the
details. This book also uses OpenVera to show how some of these
abstract modeling techniques are used in an object-oriented lan-
zuage.

6. For VHDL, I recommend VHDL Coding Styles and Methodologies by
Ben Cohen (Kluwer Academic Publisher). Other recommendations for
other languages are suggested in the Preface on page xxii.
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Records

Sample 4-28,

VHDL record
for an ATM
cell

Records can be
faked in Verilog.

The faked record
is not a real object.

Records are used to represent information composed of various
smaller pieces of different types. This section develops a technique
for modeling records in Verilog. Records are directly supported by
VHDL, OpenVera and e (using record, class and struct respec-
tively). Records are ideal for representing packets or frames, where
control or signaling information is grouped with user information.
The code Sample 4-28 shows the VHDL declaration for a record
used to represent an ATM cell. An ATM cell is a fixed-length 53-
byte packet with 48 bytes of user data,

type atm _payload_typ is array(0 to 47) of
integer range 0 to 255;

type atm_cell_typ is recerd

vpi : integer range 0O to 4095;
vl : lnteger range 0 to 65535;
pt : bit_vector(2 downto 0};
clp : bit;

hec : bit_vector(7 downto 0);

payload: atm_payload_typ;
end reccrd;

Verilog does not support records directly, but they can be faked.
Hierarchical names can be used to access any declaration in a mod-
ule. A module can emulate a record by containing only register dec-
larations, When instantiated, the module instance emulates a record
register, with each register in the module becoming a field of the
record instance. The record declaration for an ATM cell can be
emulated, then used in Verilog, as shown in Sample 4-29. The mod-
ule containing the declaration for the record can contain instantia-
tion of lower record module, thus creating multi-level record
structures. '

Although Verilog can fake records, they remain Jakes. The record is
not a single variable such as a register. Therefore, it cannot be
assigned as a single unit or aggregate, nor used as a single unit in an
expression. For example, Sample 4-30 attempts to compare the
content of two cells, assign them and use them as arguments. It
would produce a syntax error because the cells are instance names,
not variables nor valid expressions.
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————  module atm_cell_typ:;
Sample 4-29, reg [11:0] wvpi:
Verilog record reg [15:0] wvei;
for an ATM reg [ 2:0] pt;
cell

Sample 4-30.
Verilog
records are not
objects; this is
invalid Verilog

Provide conver-
sion function to
and from an equiv-
alent vector.

reg clp;

reg [ 7:0] hec:

reg [ 7:0] payload [0:47];
endmodule

module testcase;
atm_cell _typ a_cell();

initial

begin: test_procedure
integer 1i;
a_cell.vci = 0;

for (i = 0; 1 « 48; 1 = 1 + 1) begin
a_cell.pavload[i] = 8'hFF;
end
end
endmodule

~module testcase;

atm_cell_typ actual_cell();
atm_cell typ expect_cell();
atm_cell typ next cell():;

initial
begin: test_procedure

1f (actual_cell !== expect_cell)
expect_cell = next_cell;
recelve_cell (actual_cell);

end
endmodule

You can work around the limitation of these fake records by using
conversion functions between records and equivalent vectors. Fol-
lowing object-oriented practices, these packing and unpacking
functions are located in the record definition module and called
using a hierarchical name. The code Sample 4-31 shows how the
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Sample 4-31.

Conversion
functions for
Verilog
records for an
ATM cell

Use a symbol to
predefine the size
of the equivalent
record.

Define a symbol
for the vector size
declaration.

tobits and frombits conversion functions can be defined. Sample 4-
32 shows how the previously invalid approach of Sample 4-30
becomes usable and by translating ATM cell records to and from
bit-vector objects.

module atm_cell_ typ;
reg [11:0] vpi;
reg [15:0] wveci;

reg [ 7:0] paylcocad [0:47];

function [53*8:1] tobits;
input dummy;

tobits = {wvpi, wvci,
endfunction

.. payload[47]};

 task frombits;
input [53*8:1] cell;

{vpi, wvci, ., payload[47]} = cell;

endtask
endmodule

One difficulty created by the workaround is knowing, as a user,
how big the bit vector representation of the record is. In Sample 4-
32, the size of the bits temporary reg and the size of the argument of
the receive_cell task must be known. Should the representation of
the record change (e.g., a field is added), all wires and registers
declared to carry the equivalent bit vector representation would
need to be modified.

The best solution is to define a symbol to hide the size of the corre-
sponding vector from the user as shown in Sample 4-33. This
method presents a disadvantage: The symbol must be declared
either in a file to be included using the “include directive, or the
module defining the record type must be compiled before any mod-
ule making use of it. The latter also requires that the “reserall direc-
tive not be used. Because ‘define symbols are global to the entire
Verilog compilation process, you must make sure that the name will
be unique.
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Sample 4-32.

Turning Ves-
ilog modules
into objects

Records are
classes in Open-
Vera and structs in
e

module testcase;

atm_cell_typ actual_cell();
atm_cell_tyvp expect_cell{);
atm_cell_typ next_cell{);

reg [53*8:1] bits;

initial
begin: test_prccedure

if (actual_cell.tobita(() !==
expect_cell.tobits(())

expect_cell.frombits (next_cell.tobite(0)};

recelve_cell(bits);
actual_cell.frombits (bits};
end

task recelve_cell;
output [53*%8:1] bits:

endtask
endmodule

Records are modeled using classes in OpenVera and structs in e.

Because these languages are object-oriented7, record instances are
objects in their own right. As shown in Sample 4-34, they can thus
be compared, copied and moved around. But because they are
objects, they must be instantiated (or allocated). When declaring an
object-type variable, one only declares a reference (or a pointer) to

an object instance, not to an individual objects. Two object-type
variables can refer to the same object instance. When comparing
object references, you are checking whether they refer to the same
object, not if the referred objects are identical. A comparisen func-
tion must be nsed to compare the content of two object instances.

7. Object-oriented (OO) purists could debate to what extent each is truly
OQC. They are OO enough for this application.

2. For more details on the difference between a reference and an instance,
see “Classes” on page 166.
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Sample 4-33.

Hiding the
size of the
equivalent
vector

Conversions func-
tions are automati-
cally provided.

module atm_cell_typ;
‘define ATM CELL_TYP [53%8:1]

.

endmodule
module testcase;

atm _cell_typ actual_cell();
atm_cell_typ expect_cell();
atm_cell_typ next_cell();

reg ‘ATM CELL TYP bits;

initial
begin: test_procedure

if (actual_cell.tobits(0) !==
expect_cell.tobits (0))

expect_cell.frombits (next_cell.tobits{0));

receive_cell (bits);
actual_cell.frombits (bits);
end

task receive_cell;
output ‘ATM_CELL_TYP bits;

endtask

endmodule
Another advantage of OpenVera and e is that, if the fields are
marked as packed or physical respectively, the conversion functions
to and from arrays or lists of bits are automatically provided and
may not need to be manually implemented. I say “may” because
these implicit conversion functions in real-life class and struct dec-
larations involving variance, inheritance and extensions usually do
not produce the desired result. However, these implicit conversion

functions remain useful when manually implementing conversion
functions that yield the desired result.
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—————— #include *atm_cell.vrh”
Sample 4-34.
Records in task receive_cell {atm_cell cell)
OpenVera are {
objects
}
program testcase
{ [N
atm_cell actual_cell = new;
atm_cell expect_cell = new;
atm cell next_cell = new;
if {lactual_cell.compare (expect_cell))
expect_cell = next_cell;
receive_cell (actual_cell);
}
Variant Records
Varantrecordsare  Neither VHDL, Verilog nor OpenVera support variant records.

not directly sup-
ported in Verilog,
VHDL or Open-
Vera.

Variant records
can be defined
manually.

Variant records provide different fields based on the content of
another. For example, ethernet frames may or may not contain four
additional header bytes carrying virtual LAN information. Variant
records automatically handle these two different formats concur-
rently, converting to and from bits as appropriate.

Because variant records are not supported, a record structure that
can represent both header formats must contain declarations for the
optional fields and control variables indicating which optional
fields are active. Any operations on the variant record must check
the value of the conirol field to determine if the optional fields are
to be processed. Even in a language where they are directly sup-
ported (such as ¢), variant records must be allocated internally to
handle the largest possible data structure.

Sample 4-35 shows an OpenVera class modeling a MAC frame
with optional virtval LAN tagging. When the has_vlan property is
non-zero (i.e., true), the fag, priority and vien_id properties are
valid and “exist”. When the has_vian property is zero (i.e., false),
these subsequent properties are not relevant and do not exist. Tasks
and functions in the class, such as to_bytes and from_bytes, will use
the has_vilan property to determine whether the other properties
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Sample 4-35.

Variant record
in OpenVera

e supports variant
records through
when-extensions.

exist and process the MAC frame accordingly. The implicit pack
and wnpack methods cannot be used because the optional fields
would either always be included or excluded, depending on
whether they are marked as packed. The optional fields remain
accessible and the langnage has no mechanism to prevent their use,
so programmer discipline is required. This example also demon-
strates another case of record variance: variable-length fields. The
data property can have a variable number of bytes.

class mac_frame {
rand bit [47:0] da;
rand bit [47:0] sa;

rand bit has_vlan; // VLAN control
rand bit [15:0] tag; // VLAN

rand bit [ 2:0] priority; // VLAW

rand bit cfi; // VLAN

rand bit [11:0] vlan_id; // VLAN

rand bit [15:0] len_typ;

rand integer len;

rand bit [ 7:0] datal] assoc_size len;
rand bit [31:0] fcs;

function bit [31:0] compute_fesi):;
task to_bytes(bit [7:0) bvtes[])

if (this.has_vlan) {

}

}
task from_bytes(bit [7:0] bytes[]);
}

€ has a built-in mechanism for supporting variant records. Addi-
tional fields (and any other struct-level declarations such as meth-
ods) can be defined when some other fields have a specific value,
They will exist and be accessible only when it will be ascertained
that the control ficld has the required value and the reference to the
record instance has been properly typecasted. The implementation
of the various methods must manually handle the presence or
absence of the optional fields. Testing the value of a control field
can be dene using the usual == comparison operator then the type-
casting can be done vsing the as_a() operator. However, this is such
a frequent operation that e provides a shorthand notation with the
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Sample 4-36.
Variant record
e

Optional fields are
really there, even
if they are not
accessible.

Could use access
variables in
VHDL.

“is @ operator with on-the-fly type casting. See Sample 4-36 for an
example.

tyvpe mac_frame_format: [DIX, IPX, LLC, SNAP];
struct mac_frame {

format: mac_frame_ format:

da : uint (bits: 48);

sa _ : uint (bits: 48);

vlan : bool; // VLAN control

when vlan mac_frame {

tag : uint (biteg: 16);
priority: uint (bits: 3):
cfi : bit;
vlan_id : uint (bits: 12);
i
len_tvp: uint (bits: 16);
data : list of byte;
fcs : uint;

to_bytes(): list of bytes {

if {(me ig a vlan mac_frame (vl_me)) {
regult.add(vl_me.taqg);

Yi

i

The memory for the optional fields is always present in all
instances of the variant record, whether they officially exist or not.
In fact, it is possible to bypass the type checking mechanism and
typecasting requirement by referencing the optional fields using
their hidden name. For example, the opticnal field named priority
controlled by the value of the vlan field is hidden under the name
vian’property. Using the hidden name for an optional field is not
recommended. You may encounter these breaches of elementary
programming ethics in code written by engineers who were igno-
rant of the on-the-fly casting ability of the is a operator and were
too lazy to perform the explicit type check and casting. You, on the
other hand, have no (longer) such excuse.

A variant record could be emulated in VHDL using an access type
for the optional or variable-length fields. However, this would put
severe limitations on its usability as signals cannot be of a type con-
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Single inheritance
should not be used
to model concur-
rent variances,

Use variance con-
trol fields.

taining an access type. Only variables could make use of this vati-
able-length record.

You may be tempted to implement variant records using inherit-

ance’ as shown in Sample 4-37. First, a base class represents the

record without any optional field. Then, derived classes (for exam-
Ple, using the like inheritance mechanism in e) are used to add vari-
ous optional fields. Although very object-oriented, this approach
creates several limitations.

» First, you will not be able to randomly generate a mix of frames,
sometimes with the optional fields, sometimes not. Each deriva-
tive creates a new data type. Once an instance of a type is cre-
ated, it cannot be modified. Each time it will be generated
randomly, it will produce random values for that type and no
other.

» Second, you will not be able to create combinations of optional
fields easily. If multiple inheritance is not supported (and Open-
Vera and e do not support it), you cannot recombine multiple
derived classes into a single one containing multiple variances,
With single inheritance, you would have to create a new type for
each combination of optional fields. This quickly grows to a sig-
nificant number, which grows exponentially when testbench-
specific additions must be made to the record type.

If a single class with variance control fields (or e’s when-inherit-
ance) are used, as in Sample 4-35, a single data type exists. The
value of the control fields themselves can be randomized, thus
sometimes yielding the presence of the optional field, sometimes
yielding their absence. Multiple, orthogonal variances can co-exist
in the same class, using different control fields. A new variant only
needs to be implemented once, antomatically offering all possible
combinations with previously implemented orthogonal variances.

9. Inheritance will be discussed in more detail in “Inheritance” on
page 173.
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Sample 4-37.
Variant
records imple-
mented using
single inherit-
ance in Open-
Vera

¢ has built-in one-
dimensional
arrays.

class mac_frame {
rand bit [47:0] da;
rand bit [47:0] sa;
rand bit [15:0] len_typ:
rand integer len;
rand bit [ 7:0] datal[] assoc_size len;
rand bit [31:0] fcs;

}

class vlan_mac_frame extends mac_frame {
rand bit [15:0] tag;
rand bit [ 2:0] priority;
rand bit [11:0] vlan_id;

}

class control_mac_frame extends mac_frame {
rand bit [15:0] opceode;

Single-dimensional arrays are useful data structures for represent-
ing linear information such as fixed-length data sequences, look-up
tables or memories. Two-dimensional arrays are used for planar
data such as graphics or video frames. Three-dimensional arrays are
not frequently used, but they could find an application in represent-
ing data for video compression applications such as MPEG. Arrays
with greater numbers of dimensions have rare applications, espe-
cially in hardware verification. VHDL and OpenVera support
multi-dimensional arrays for any data type. Verilog-2001 has intro-
duced support for multi-dimensional arrays for reg and wire. e only

supports one-dimensional arraysm.

As shown in Figure 4-3, array elements are located in consecutive
memory locations. They are accessed by computing their address
using an offset from a base address. Truncation, element replace-
ment and element appending in unused pre-allocated memory at the
end of the array are efficient operations. For example, adding a

10. The built-in list type in e is really an array (see “Lists” on
page 157 for a discussion of the difference}.
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Figure 4-3,

Array
elements in
memory

Multi-dimen-
sional arrays must
be mapped onto a
single dimen-
sional structure,

Figure 4-4.

Mapping a
4x4 array to a
linear memory

Use arrays of
arrays in e and
OpenVera.

twelfth element to the array in Figure 4-3 would simply consume
one of the unused memory locations. But element insertion, ele-
ment deleting and array lengthening beyond the amount of pre-allo-
cated memory are expensive operations that require copying of a
potentially large number of elements to maintain the integrity of the
consecutive memory locations. For example, performing a pop0f)
operation in an e Jist, requires that all other elements in the array be
copied or “shifted” down one position.

01 23456 78 91011
N N Y N Y N N

| )

Base : * o
Address T index size_of (element)

Even though VHDL, Verilog and OpenVera offer multi-dimen-
sional arrays, they must be mapped to the linear hardware memory
of the host computer. That hardware memory is only one-dimen-
sional. Figure 4-4 shows a two-dimensional array mapped into a
linear memory. Indexing an element requires knowing the length of
each preceding row. To make these (often highly repeated) calcula-
tions efficient in large multi-dimensional arrays, it is necessary to
have fixed-sized dimensions. Once a VHDL, Verilog or OpenVera
array has been declared and allocated, it cannot increase nor
decrease its size.

0123

0123012301230123

| 1)

Base + row * size_of (row)
Address . column * size_of (element)

Wk o

Multi-dimensional arrays in e can be emulated by using an array of
structs containing an array. Since this mmlti-dimensional array is
composed of independent one-dimensional arrays, the size and
number of each dimension can vary. However, looking up one ele-
ment will require looking up each individual dimension. Sample 4-
38 shows an e definition, instantiation and reference of a two-
dimensional array of RGB values. The same technique can be used
in OpenVera, using an associative array of classes containing an
assoclative array, if multi-dimensional arrays with variable number
of dimensions is required.
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———  struct rgb {
Sample 4-38. red : byte;
Two-dimen-

sional array in
e

Lists

Lists are imple-
mented using
links.

Figure 4-5.

Doubly-linked
list elements
in memory

green: byte;
blue : byte;
}s

struct line {
pixels: list of rgb;
}i

struct picture ({
lines: list of line;
Y

var vga: plcture;
gen vga keeping {
it.lines.gize() = 480;
for each {line) in it.lines {
line.pixels.size(} == 640;
T
}i
var center: rgb = vga.lines[240].pixels[320];

Lists are used to represent ordered linear information and, as such,
are very similar to one-dimensional arrays. They fundamentaily dif-
fer from arrays in their implementation. As shown in Figure 4-5,
list elements are located in independent memory locations. The lin-
ear and ordered relationship is created by a series of pointers, start-
ing from a head pointer, that points to each subsequent element in
the list. Lists are frequently doubly-linked in the reverse direction,
starting from a tail pointer, to facilitate some list operations. ¢ lists
are implemented using consecutive memory locations, not linked
elements, That is why I consider them to be arrays instead of lists.

h

A

> > <+ ail |
element (; element L element

null prey prev
next [~ next [— null
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Lists can be more
efficient than
arrays.

Lists can be used
to model large
memories.

Because of their different implementation, lists are more memory-
efficient than arrays if not all locations are used. Arrays must allo-
cate memory for their entire size, whereas the amount of memory
used by lists grows and shrinks as the number of elements they con-
tain increases or decreases. Elements can be inserted or deleted
anywhere in the list at little cost. All that is required is a re-orienta-
tion of the pointer sequence to include or remove the element.

However, while the elements of an array can be accessed randomly,
the elements in a list must be accessed sequentially, starting at the
head. If the memory usage of your model is of concemn, using lists
may be the better approach. If access time to various elements is
your primary concern, using an array is a more efficient implemen-
tation. Sample 4-39 shows an implementation of a doubly-linked
list. The Vera ListMacros.vrh file provides a predefined doubly-

linked list'! for any user-defined types. The example shown in
Sample 4-39 can be turned easily into an e define as macro and

used to declare lists for any user-defined typelz.

One of the best applications of a list is to model a large memeory. In
system-level simulations, you may have to provide a model for a
large amount of memory. With the amount of memory available in
today’s systems, and the overhead associated with modeling them,
you may find that you do not have a computer with enough
resources to simulate your system-level model efficiently. For
example, if you model a memory with 32-bits of addressable bytes
using an array of std_logic_vector in VHDL, the amount of
memory consumed by this array alone exceeds 128Gb (nine logic
values requiring 4 bits to represent each std_logic bit times 8
bits per byte times 4Gb),

11. Double-linked lists create self-referential networks that cause problems
in some garbage collection algorithms, such as the one used in Vera.
When you are done using a Veralist in Vera, be sure to call the purge()
method to prevent memory leaks.

12.In fact, you can find the double-linked list e macro in the seurce section
of the book website.
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Sample 4-39.
Doubly-linked

listin e

Only the sections
of the memory
currently in use
need to be mod-
eled.

This is called a
sparse memory
model.

struct dl_list {
head: dl_list_el;
tail: dl_list_el;

push(element: my, _type) is {
var link: dl_list_el = new;

link.element = element;
link.previcus.next = link;

" link.next = null;
link.previous = tail:
tail = link;

Y

struct dl_list_el {
element: my_type;
prev : dl_list;
next ; dl_list;
&

for {link = a_list.head;
link != null;
link = link.next) {
if (link.element != ...])
i

In any simulation, it is unlikely that all memory loFations. are
required. Usually, the accesses are limited to a few regions within
the memory address space. A list can be used to model a very large
memory in a fashion similar to a cache memory. Only regions of the
memory that are currently in use are stored in the list. When a par-
ticular location is accessed, the list is searched for the region of
interest, allocating a new region as necessary. A similar situation
occurs when it is necessary to look up packets based on the content
of a field, such as the destination address. For example, looking up
an ethernet MAC frame based on a 48-bit destination address
would require an array with over 281 billion elements. Assuming
only minimum-size MAC frames, this array would consume 18
million gigabytes! It is much more efficient to allocate only those
locations for which we already have a MAC frame.

Figure 4-6 shows a conceptual view of an address space where onlly
the portions that are actively used are physically allocated. This
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Figure 4-6.
Sparse
memory
model

A linked list can
be used to model] a
Sparse memory.

N W w

4Gb 0

Bl = Allocated region

type of partial memory model is called sparse memory model. The
size of each individual region affects the ultimate performance of
the simulation. With a smailer size, the computer’s memory is used
more efficiently, but more regions are looked up before finding the
one of interest. Using larger regions has the opposite effect: More
memory usage is traded off for improved look-up efficiency. Sparse
memory models are directly supported in VCS by using the sparse
pragma, in OpenVera with the associative array and in e with the
keyed list. All commercial memory models use a sparse memory
model. There is a dynamic sparse memory model PLI package pro-
vided by Cadence in the NC-Verilog distribution directory. You will
find it at:

SCDS_HOME/tools /verilog/examples/PLI/damemn.

A sparse memory model can be implemented easily using a list of

records, where each record represents a region of the memory 3,
The list can grow dynamically by allocating each region on
demand, and linking each element in the list to another using access
types. The implementation of a sparse memory model using a

linked list in VHDL' is shown in Sample 4-40. The memory
regions are implemented as records: a field for the memory region
itself (implemented as an array) and a field for the base address of
that region. The record also contains a field to access the mext
region in the linked list. Because access types and access values are
limited to variables, using such an implementation may be imprac-
tical if the list needs to be passed through interfaces.

13.This statement does not imply that this is how OpenVera’s associative
array or e’s keyed list are implemented.,

14.For 2 more detailed description and alternative implementation, refer to
section 6.1 of “VHDL Answers to Frequently Asked Questions”, 2nd
edition by Ben Cohen (Kluwer Academic Publisher, ISBN 0-7923-
8115-7, 1998),
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———————— process ‘

Sample 4-40. subtype byte is std_legic_vector(7 downto 0);
Implementa- type region_typ is array{0 to 31) of bvte;
tion of a

Sparse mem- type list_el typ: '

ory using a type list_el ptr is access list_el_typ;

linked list in type list_el_typ is record

VHDL base_addr : natural;

Provide operators
for the data struc-
ture.

~region : region_typ;
‘next_region: list_el ptr;
end record;

variable head: list_el_ptr;

-- See Sample 4-41 for continuation
begin

end process;

In Sample 4-41, a procedure is implemented to locate and return the
section of the memory containing any address of interest. It starts at
the head of the list, looking at every element of the list. If the end of
the list is reached without finding the required region, a new region
is allocated and prepended to the head of the list.

In Sample 4-42, a procedure is provided to read a single memory
location, After locating the proper section of memory, it simply
returns the content of the appropriate location in the section. There
is also a procedure used to assign to a memory location. It work_s
like the procedure to read a location, except that a new value is

assigned.

Lists are most useful when they come with a rich set of operators,
such as appending or prepending to a list, removing the element at
the head or tail of the list, finding out its length or iterating over all
of its elements. These operators shonld be provided in the same
package as the data structure. In an object-oriented languz?ge, these
are methods of the list object. The list macros supplied with Open-
Vera contain definitions for many list and iterator operators. Refer
to Appendix B of the Vera User’s Manual for more details.'The
built-in /st type in e, although not technically a list, comes with a
rich set of list operations and iteration. The double-linked list exam-
ples shown in Sample 4-39 shows a single push() oper'attor to
append a new element at the end of the list. A complete list imple-
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Sampled-41. P O75E
Looking up a ee Sample 4-40 for declarations
sparse mem- .
ory model in brocedure get_region{addr: in natural;
VHDL iq here: out list_sl_ptr)
variable element: list_el_ptr;
begin
element := head;

——‘Have we reached the end of the list?
while (element /= null) loop
-- I; the address of interest in this
-- list element?
if (element.base_addr <= addr and
addr < element.base _addr +
element.region’length) then
here := element;
return;
end if;
element := element .next_region;
end loop;
element := new list_el_typ;
element.base_addr :-
addr / element.region’length;

element.next_region := head;
head := element;
here := element;

end get_region;

-- See Sample 4-42 for continuation
begin

end process:

mentationl would come with many more useful operators, OpenVera
also provides a mailbox, which is a simple FIFO. Although it has
none of the usual list operators, it is suitable for simple queue appli-

cations where data is removed from the front of the list and is added
to the end of the list.
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- process
Sample 4-42. -- See Sample 4-41 for declarations
Reading and

writing a loca-
tion in a sparse
memory
model

Files

External input files
complicate config-
uration manage-
ment.

procedure lookup{addr : in integer;
value: out byte) is
variable element: list_el_ptr;

begin

get_region(addr, element);

value := element.region({addr -

' element.base_addr) ;
end lookup;

procedure set{addr: in integer;
value: in byte) is
variable element: list_el_ptr;
begin
get_region{addr, element):
element.region{addr - element.base_addr) :=
value;
end set;

variable val: byvte;
begin

set (10000, "01011100");

lockup (10000, wval);

assert val = "01011100";
end process;:

Personally, I prefer to avoid using external input files for test-
benches. Configuration management of the testbench and the
design under verification is complex enough. Without good prac-
tices, it is very difficult to make sure that you are simulating the
right version of the correct model together with the proper imple-
mentation of the right testbench. If you must add to the mix making
sure you have the right version of input files, often generated by
scripts from some other format of some other files, configuration
management grows exponentially in complexity. For example,
many use files to initialize Verilog memories, as shown in Sample
4-43,

Understanding the implementation of the testcase now requires
looking at two files and understanding their interaction. If the file
always contains the same data for the same testcase, it can be
replaced with an explicit initialization of the memory in the Verilog
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Sample 4-43,

Initializing a
Verilog mem-
ory nsing an
external file

Sample 4-44.

Explicitly ini-
tializing a Ver-
ilog memory

Files can program
bus-functional
models.

medule testcase;
reg [7:0] pattern [0:55];
initial $readmemh (pattern, "pattern.memh");

endmodule

code, as shown in Sample 4-44. Now, only a single file needs to be
managed and understood. In some cases, using external files is
unavoidable, such as when using input data that was produced by
an external program or recorded from actual data streams.

module testcase;

reg [7:0] pattern [0:55];

initial

begin
pattern{0]) = 8'h00;
pattern[l] = 8'hFF;
pattern[55] = 8 hCD

end

endmodule

Programmable testbenches are architected around programmable
bus-functional models and checkers, and can be programmed via an
external input file. The “program” can be as simple as a sequence of
data patterns or as complex as a pseudo assembly language with
opcodes and operands interpreted by an engine implemented in
Verilog or VHDL. However, this approach to programmable bus-
functional models makes it extremely difficult to coordinate or syn-
chronize a particular operation of the bus-functional model with
some external events or other bus-functional model. It requires the
introduction of synthetic synchronization instructions.

If a new synchronization mechanism is required, a new instruction
must be added. It is easier to “program” a bus-functional model
using the testbench language (which is a rich high-level language)
with calls to the procedural interface of the bus-functional model.
The program, being part of the testbench code, has visibility over
the necessary states of the design or other bus-functional model to
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Extemal files can
eliminate recompi-
fation.

cocrdinate and synchronize them effectively. A program can also
be a set of limit values for constraints in a randomly-driven bus-
functional model. But this limits programs to modifying constraint
boundary conditions. Programs cannot add entirely new constraints
or relax existing ones,

Using external input files can save a lot of compilation time if you
use a compiled simulator such as NC-Verilog, VCS or any VHDL
simulator. If you can modify your testcase by modifying external
input files, it is not necessary to recompile the mode] of the design
under verification nor the testbench. For large designs, this compi-
lation time can be significant, especially for a gate-level design
with SDF back-annotation. However, with HVLs such as OpenVera
and e, which co-simulate with the HDL model, simulating a differ-
ent testbench only requires loading a different set of HVL objects or
source files. If the design and the interface of the HVL to the design
does not change (i.e., the shell or stub files), it is not necessary to
recompile the Verilog or VHDL code either. With Specman Elite, it
is even possible to load a new testbench without even quitting the
simulation. Using external files to control a testbench is no longer
necessary to avoid re-compilation if HVLs are used.

Mapping High-Level Data Types to Physical Interfaces

It is very unlikely that high-level data types are directly usable by
any device that must be verified. Any complex data structure has to
be mapped to bits, bytes, addresses and registers. They are sent to
or received from the design using a physical-level interface using a
more basic data representation, such as a bit, byte or word, usually
including synchronization, framing or handshaking signals. In
Chapter 5, 1 show techniques using bus-functional models for
applying high-level data to a design via a low-level physical inter-
face (and vice-versa on the output side).
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OBJECT-ORIENTED PROGRAMMING

OpenVera and e
are object-ori-
ented.

Classes

Objects are data
and procedures
together,

Everything is
modeled as an
object.

Object-oriented programming is a methodology that has been used
with great success in software engineering for many years. After
structured programming (i.e., the removal of the “go to” statement
and introduction of subprograms and control structures), it is the
next evolutionary step in language design. Object-oriented used to
be one of those buzzwords used to describe almost everything. In
this book, object-oriented is used to identify a methodology that
makes use of (and a language that supports) classes, inheritance and
polymorphism. Both OpenVera and e meet this definition of object-
oriented.

Classes are a collection of variables and subprograms that create
object types. In OpenVera, a class is defined using the class state-
ment. In e, a class is defined using the struct or unit staternent, A
class defines an object’s state as a collection of data members. A
class also defines all possible operations on the object using meth-
ods. In OpenVera, data members are called properties and methods
are functions and tasks declared within the class. Sample 4-35
shows an example of a class declaration in OpenVera. Tn e, data
members are called fields and methods are called methods and time-
consuming methods (TCMs). Sample 4-36 shows an example of a
struct declaration in e.

Packets, frames and cells are modeled as objects. Their various
fields are data members. Methods exist to calculate and check the
value of any CRC or error protection field, translate the field values
to and from a sequence of physically transmitted bytes and segment
2 large object into a list of smaller ones. Processor instructions are
modeled as objects. Their opcode and various operands are data
members. Methods exist to produce the object code value, relocate
branch destination values and display the current value as an
assembly code statement. Floating point values—which are not
directly supported by either language—are modeled as objects.
Data members represent their integer and fractional parts. Methods
perform arithmetic and logical operations, translate to and from a
fixed-point value or display the floating-point number using a user-
specified format.
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Data members
consume mernory.
Methods do not.

Data members can
be global.

Bus-functional models are objects. Their interface signals are data
members. Methods implement the procedural interface. A design
configuration is modeled as an object. The routing table, co§fficient
array or interface configuration parameters are modeled using dat.a
members. Methods are used to download the configuration speci-
fied in the data members in the design, or generate a random design
configuration. A scoreboard (see “Scoreboarding” on page 348 for
more details on scoreboards) is modeled as an object. The lists of
expected output data sequences are data members. Methods exisF to
transform a new input data value according to the current design
configuration, compare an output data value against expected ones
and check the scoreboard for any losses at the end of the simulation,
An entire testbench is an object in which the bus-functional models
and scorebeards sub-objects are data members. Methods implement
the reset procedure, main testcase sequence and termination proce-
dures.

By default, each data member is local to each object instance.
Methods, however, are global to the class. For example, if there are
1,000 instances of the mac_frame class (see Sample 4-35), there are
1,000 instances of the da property but only a single instance of the
code implementing the fo_byfes function. The memory requirec_l to
implement the data members will be replicated for each object
instance. Methods will not consume more memory, whether an
object is instantiated only once or 1,000 times. If memory con-
sumption starts to be a problem, focus on the data members of the
objects with the most instances.

It is often necessary to have information that will be shared among
all instances of an object. For example, if each object has its own
instance of an error counter, it would be difficult to determine the
number of error messages that were produced during a simulation,
If that error counter is global, that task becomes much easier.
Another example is antomatically assigning unique ID numbers to
each object instance. A global ID number source is the only way to
ensure uniqueness. In OpenVera, a data member global to the class
is declared using the static attribute, as shown in Sample 4-45. e has
no concept of data members global to a struct, but they can be emu-
lated by putting them in a scope common to all instances, s.uch as
the global sys struct, as shown in Sample 4-46. Unlike static dat.a
members that remain in their individual class name space, there is
only one sys name space global to the entire simulation. It is neces-
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Sample 4-45.

Global data
members in
OpenVera

Sample 4-46.

Global data
members in e

Verilog’s module
and VHDL's pack-
age are not
objects.

Object-Oriented Programming

sary to use some naming convention or encapsulation in another
object to prevent name collision with other global variables added
to sys by other testbench components.

class sim_status {
static integer n_errors = 0;

}

class mac_frame {
gim status status;

Objects have pub-
lic and private dec-
.- larations.
if (this.compute_=fcs() !== this.fcs) {

printf (“Bad FCS8*);
this.status.n_errors++;

}

class mii {
sim_status status;

if (col 1’bl && crs !== 1'bl} {
printf(“Collision without carrier\n”);
this.astatus.n_errors++;

extend sys {
mac_frame next_id: uint;
Y

struct mac_frame {
id: uint;
pre_generate() is alsoc {
me.id = sys.mac¢_frame next_id;
sys.mac_frame_next_id += 1;

}

Keep non-random-
ized data mem-
bers private.

i

You may be tempted to conclude that Verilog is object-oriented
since modules, used to emulate records as shown in “Records™ on
page 146, can contain both variables {data members) and functions
and tasks (methods). Verilog is not object oriented because modules
are not true objects. Modules are hierarchical constructs, not data
structures. They cannot be assigned. nor passed to tasks or func-
tions as arguments. They cannot be compared or used in expres-
sions. VHDL packages may also look like objects: They can

contain data (shared variables) and procedures. In addition to pre-
senting all of the same non-object behaviors that Verilog modules
do, VHDL packages cannot be instantiated more than once, Even
though a package is used in many library units, a single instance
exists for the entire elaborated simulation medel. And if that
weren’t enough, neither language can emulate inheritance nor poly-
morphism, which are other key aspects of object-orientedness.

The concept behind objects is to encapsulate data and its transfor-
mation operations to present to the user a coherent and stable inter-
face. As the object evolves or is modified, the interface visible to
the user should remain constant. To help enforce this, objects usu-
ally have two separate declaration spaces: public and private decla-
rations, similar to VHDL’s separate package and package body
concept. Public declarations are accessible from the outside of the
object (i.e., by the users), whereas private declarations are only
accessible from within the object (i.e., by the implementer).

If the public interface is never modified (or modified in such a way
as not to impact the user), the entire private implementation can be
modified or re-written without affecting the users. By default, dec-
larations are public. In OpenVersa, to make a declaration private, use
the local attribute, as shown in Sample 4-47. Any local data mem-
bers or methods will not be found in the class declaration in the
generated header file, since it is not publicly accessible. e has a dif-
ferent data protection granularity. Any declaration marked package,
as shown in Sample 4-48, is only accessible from other package
members. Since any source file can declare itself as a member of
the package, data protection is controlled by the user, not the author.
Package members are visible to all classes in the package and is
closer, as a concept, to C++’s friend classes,

Once a data member has been made public, you can count on other
objects to make direct use of it. It is not possible to control its
access, nor ensure that its value remains consistent with other data
members. For example, the length property in Sample 4-49 can be
modified independently of the data property. It is very easy for a
user to corrupt the internal state of the object by directly operating
on the data members. Traditional object-oriented practice com-
mands that all accesses to an object be done through methods.
These methods can ensure that the value of the properties are coher-
ent at all times, as shown in Sample 4-50. However, if you end up
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Sample 4-47.

Local class
declarations in

class sim_status {
static integer n_errcrs = 0;

Object-Oriented Programming

OpenVera class mac_frame {
local sim_status status;
if {this.compute_fcs(} !== this.fcs) {
printf ("Bad FCS");
this.status.n_errors++;
}
}
clags mii {
local sim_status status;
if {col === 1'bl && crs !== 1'bl) {
printf{“Collision without carrier\n”};
this.status.n_errors++;
}
}
————— package mac_frame;
Sample 4-48.
Package pro- extend sys {
tection 1n e. package mac_frame_next_id: uint;
keep max_frame_next_id == 0;
i
struct mac_frame {
1id: uint;
pre_generate() is alsoc {
me.id = sys.mac_frame_next_id;
svs.mac_frame_next_id += 1;
}i
compute_fes(): uint {(bits: 32) is {
1
T
with a pair of ser_data() and get_data() methods for each data
member, then internal coherency is probably not required, or you
are providing methods with too low a level of abstraction. You
might as well make the data members public. OpenVera and e place
an additional requirement for making a data member public. It is
not possible to externally constrain a private data member since it is
not accessible. All randomized data members must be public to
170 Writing Testbenches: Functional Verification of HDL Models

Sample 4-49.

Unsafe object
state

Sample 4-50.

Safe object
state

Reference and
instance are differ-
ent things.

allow them to be constrained. More on constraints and randoiniza-
tion will be discussed in “Random Stimulus” on page 354,

class byte_list {
integer length = 0;:
bit [7:0] datall:

}

program ignoramus_user {
byte_list my_list = new;

my_list.length = 100;

my_list.datal0] = 1;

// List is corrupted: array has 1 element,
// NOT 100.

class byte_list {

local integer length = 0;
local bit [7:0]1 datall;
task resize({integer length);

}

program ignoramus_user {
byte_list my_list = new;

my_list.length = 100;
my_list.resize(100);
// List now has 100 element,

// Syntax error!

}

When declaring an object variable, all you are declaring is a refer-
ence (or a pointer) to an object of a specific class. By default, object
variables do not refer to any object (Figure 4-7(a)). They must first
be initialized by allocating an instance of an object created using

new or gen'>, When assigning an object variable to another, all you
are doing is making a copy of the reference, not a copy of the object
instance (Figure 4-7(b)). If one of these two references modifies the
object, it is modified for both variables since they both refer to the
same object. A common mistake is to put references to objects in a

15.The gen action is unique to e. Furthermore, e will recursively allocate
all object-type data members in a newly allocated instance. In Open-
Vera, this must be done explicitly in the constructors.
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Figure 4.7,
Object
reference vs.
object instance

Sample 451,
Common mis-
take with
object refer-
ence

Comparison and
copying can be
shallow or deep,

Standard methods
must be provided.

list, but keep using the same reference to generate new values, as
shown in Sample 4-51. Since there is a single call to new, a single
instance of the ATM cell object exists. The list ends up containing
several references to the last value of the cell, instead of to 10 ran-
dom cells as expected. Similarly, when comparing two object vari-
ables, you are comparing their reference, not their content. If both
variables refer to the same object instance, the comparison will be
true (Figure 4-7(b)). If both objects refer to two different objects
(even if they have identical content), the comparison will be false
(Figure 4-7(c)).

mac_frame frl; fri
mac_~frame fr2; frz2

frl frl

new; fr2 new;
fri; frl new fr2;

frl fr2

o

] null ARC XYZ [ XYz
frl ==1r2 frl I=fr2

(2} ) ©

var cell: atm_cell = new;
var cells: list of atm cell;

while (cells.size() < 10) {
cells.push{cell); -
}

Because copying or comparing object variables only deals with the
references, methods must be used to perform comparison or copy
functions. If the object instances being compared also contain refer-
ences to other objects, how are these handled? If only the references
are used, then the operation is said to be shallow (Figure 4-8(a)). If
the operation is applied recursively down the hierarchy of objects,
the operation is said to be deep (Figure 4-8(b)). In e, every struct
includes the implicit copy method to perform a shallow copy opera-
tion and the deep_copy() and deep_compare() predefined routines
can perform a deep copy or compare operation on any instance of a
struct or list. In OpenVera, the new constructor can be used to per-
form a shallow copy operation, but comparison and deep copy
methods must be written manually for each class.

When defining a new object type, you should always provide the
methods usually required for using an object. You should try to pro-
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Figure 4-8.

Shallow and
deep
operations

Inheritance

Objects can build
upon other objects.

struct rgb {

red : byte; dot.copy () deep_copy (dot}
green: byte; _ _ i _
blue : byte; [pixel | [ pieel | [Lpixel | [ pixel |
bi
struct pixe].. { v v
x o rouintg b | [
Y : uint;
color: rgb: shallow deep

}i (a) (b
var dot: pixel;

4

vide these methods using a consistent name and argument to avoid
dealing with meaningless differences between varicus classes. For
example, methods to display the object in a meaningful human-
readable format always prove indispensable. Both e and OpenVera
come with predefined object print methods or statements, but they
usually produce the information in a format that is too detailed, ver-
bose or not intuitive. Other methods that should be included are
deep-copy, deep-compare (OpenVera only), packing to and from a
list of bytes, words or quads, calculating and checking error-protec-
tion fields, checking the internal consistency of data members and
converting to and from other object types.

What if there is a class that does almost everything you need, but it
is missing only that one little feature, what do you do? The tradi-
tional approach would dictate that you make a copy of the useful
code, call it something else, and make the necessary modifications.
But this has just created additional code that must be maintained
and understood. With inheritance, your needs can be built upon
existing objects—even those you do not have source code for—by
only specifying the desired difference in behavior. Any unchanged
behavior is automatically inherited from the original object. Any
changes made to the original class are also automatically inberited
by the new class, reducing maintenance efforts. The original class is
called the parent or base class. The new class inheriting from the
base class is called a derived class. OpenVera's inheritance and e’s
like inheritance are traditional object-oriented inheritance mecha-
nisms. e possesses an additional inheritance mechanism: when
inheritance, which was used to model variant records (see Sample

4-36). Refer to section 4.10 of the e Language Reference Manual

Writing Testbenches: Functional Verification of HDL Models 173



High-Level Modeling

Derived objects
can overload par-
ent members and
methods.

Sample 4-52.

Adding func-
tionality
through inher-
itance

Children take after
their parent.

Object-Oriented Programming

for a detailed discussion of the differences between when and like
inheritance.

The difference in functionality between a derived class and a parent
class can be expressed by adding new data members and methods,
adding to the parent’s methods or replacing data members and
methods with new ones. For example, the verification of your
design requires that you inject MAC frames with corrupted FCS
values. But the MAC frame class shown in Sample 4-35 always has
a good FCS value. You can create a new MAC frame object that can

have a bad I'CS value, based on the value of a control property,16
using inheritance, as shown in Sample 4-52. Notice how the new
version of the compute_fes() method adds functionality to the par-
ent methods. In OpenVera, you can refer to overloaded data mem-
bers and methods in the parent class using the super prefix. In e, the
same would be accomplished by extending the compute_fes()
method using is also, where the call to the original method is

implicit, Sample 4-53,
Downcasting
and upcasting

class mac_frame_may, be_bad extends mac frame { an inheritance
rand kit is_bad; tree in e
function bit [31:0] compute_fcs(} {
compute_fcs = super.compute_fecs();
if {this.is_bad) {
bit [4:0] i = random;
compute_~fcs[i] A= 1;
}
}
}

Because derived classes are extensions of their base class, they

remain valid instances of their base class. As shown in Sample 4-

53, they can be assigned to base class variables without any type

conversion (i.e., automatic downcasting). From that point on, they

will be viewed as if they were an instance of the base class. An
Sample 4-54.

16. Why not make this derived class always a bad frame? Because generat- Using code

ing a stream containing a mix of good and bad frames would require written for the
instantiating a mix of different classes. This way, only one class needs base class with

to be instantiated. The class will decide on its own whether the frame is
good. And this approach is easier to constrain.

a derived class

174

instance of a derived class, referred to as a base class, can be
assigned back to a derived class variable with explicit upcasting.

This assignment makes all code and models that already operate on
the base class available to operate on the derived class—without
their knowledge. For example, as shown in Sample 4-54, the
derived MAC frame class with potential bad FCS values can be
downcasted to the base class and sent through the existing MII bus-
functional model from Sample 4-21. Upcasting an instance of the
base class or of a derived class on a different inheritance branch (or
lineage) causes an error. To prevent runtime errors when you can-
not rely on implicit knowledge an object’s lineage, it is always pos-
sible to test the lineage of an object. In OpenVera, use the
cast_assign() task with a CHECK argument. In ¢, use the is a condi-
tional operator.

struct instruction ...;

extend ARITHMETIC instruction ...;
extend BRANCH instruction
extend CONDITIONAL BRANCH instruction ...;

..

ééf instr: instruction;

var arith: ARITHMETIC instruction:

var brch : BRANCH instruction:

var br_if: CONDITIONAL BRANCH instruction;

instr = arith; // OK: downcasting .

arith = br; // ERROR: different lineage
instr = br_if; // OK: downcasting

br = instr.as_a(BRANCH instruction); // upcasting

instr.as_a (ARITHMETIC instructiom);
// ERROR: instance on wrong lineage

arith =

if instr is a ARITHMETIC instruction (ai) .{
arith = ai; // OK: Exec'd if correct lineage

T

)

new{...
new;

eth _mii bEfm
mac_frame_may_be_bad tx_fr

bfm.send(frame) ;
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Declarations can
be semi-private,

Inheritance and
instance are differ-
ent things.

Derived classes cannot access any private declaration in the base
class. It is often necessary to let a derived class have more intimate
knowledge of the internal state and implementation of a base class
than what is visible through the public interface. Declarations can
have the protected attribute. This makes them visible only to the
base class and any derived classes. Protected data members and
methods are “semi-private” declarations shared only between a
base class and its derived classes. When implementing a derived
class, it is assumed that you have a more intimate knowledge of a
base class (how it works, what it depends on) than a casual user,
That is why it is possible to gain greater visibility into a base class
(if allowed by the base class author). As a user of a class, do not
casually create derived classes simply to get at the protected mem-
bers and methods. Usually, these are not safeguarded as well as the
public interface and are more subject to being modified. e provides
a further restriction: members marked as private are only visible to
the base class and derived classes in the same package.

When building a new class upon an existing class, should you
inherit from it or simply instantiate it as a data member in the new
class? That depends on the relationship between the two classes. If
the new class is a different way of looking at the older class, but
fundamentally represents the same object, then inheritance should
be vsed. The corruptible MAC frame in Sample 4-52 is the perfect
example. The objective of this new class is not to create a com-
pletely separate and new object. It is to add a new capability to the

existing one. Whether good or bad, this new MAC frame version:

can still be viewed and treated like the old one—albeit with a small,
hidden difference.

The other example is the pixel and RGB objects shown in Figure 4-
8. If you already have a color object and want to build a pixel object
that has a color specification, you should instantiate the color object
as a data member of the pixel object, not derive from it. Why?
Because a pixel is not a color. A color is only an attribute of a pixel,
just like its position on the screen.
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Polymorphism

Polymorphism
means multiple
forms.

A class can be
designed to be
used only as a
base,

Which method is
called?

The term “polymorphism” means to have many forms. The concept
of polymorphism was hinted at when I talked about the autornatic
downcasting of a derived class when using existing methods that
deal with the base class, as shown in Sample 4-54. Any object has
the ability to take the form of an instance of its base class. You can
create an entire genealogy of objects. Objects on different branches
can be treated as if they were the same object, when viewed as a
comrhon base class. If all objects are derived from a single root
object, they can all be viewed as instances of that root base class.
For example, all struct definitions in e are automatically derived
from the anmy_struct object class. Polymorphism lets you write
generic methods that can deal with any objects.

Polymorphism does not happen by accident. You have to plan your
class genealogy to isolate common and useful functions in base
classes. Sometimes, the common information exists, but does not
make sense as a complete object. It would be a mistake to create an
instance of such a base class because the base class is not designed
to represent an object on its own. Rather, the base class is designed
to take advantage of polymorphism and create a single set of
generic operations.

For example, ATM cells come in two flavors: UNI and NNI. Both
have the same size, both have a large number of common fields.
They only differ by their interpretation of the first 12 bits, as shown
in Figure 4-9. To take advantage of the polymorphism between the
two ATM cell flavors, you can create an any_atm_cell class that
contains all the common fields. Derived classes will be used to add
the fields unique to each flavor. But the class any_atm_cell should
not be allowed to be instantiated on its own: it is not a valid ATM
celll A user must always use one of the derived classes. It is possi-
ble, in OpenVera, to have the compiler enforce this usage by declar-
ing the base class as virfual. As shown in Sample 4-55, attempting
to “new” an instance of a virtual class is an error.

Dealing with the object reference and type casting is relatively sim-
ple. The value of the reference stays the same while the casting
operation lets the compiler provide runtime type checking. The big-
ger question is, when a method is overloaded or extended in a
derived class, like the compute_fes() method in Sample 4-52, which
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Figure 4-9,

Differences in
UNI and NNI
ATM cells

Sample 4-55.

Using virtual
classes

A parent can act
like a child.

7 0 7 0
gfe vpi vpi
vpi vel vpil Vel
veil Vel
vel vel
UNI ATM Cell NNI ATM Cell

virtual any_atm_cell {
bit [11:0]1 vpi;

}

class uni_atm_cell extends any_atm_cell {
bit [3:0] gfc;
bit [7:0]1 vpi;

b

class nni_atm_cell extends any_atm_cell {
bit [11:0] vpi;

}

any_atm_cell a_cell;

uni_atm cell uni_cell = new;
nni_atm cell nni_cell = new:
a_cell = new; // ERROR
a_cell = uni_cell;
a_cell = nni_cell;

cast_assigni{nni_cell, a_cell);

cast_assign{uni_cell, a_cell}; // Runtime error

version is called when an instance of a derived class is referred to as
an instance of its base class?

In OpenVera, the original method in the base class is called by
default. If the methods are declared as virtual in OpenVera, the
overloaded method is called. In e, methods are always virtual, Sam-
ple 4-56 shows how a method in the base class (which is never
overloaded) makes use of a virtual method. The header error check
(HEC) computation requires operating on all header bytes—which
vary depending on the cell’s flavor. When the compute_hec()
method invokes the (always virtual in €) pack_header() method,
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Sample 4-56.

Using virtual
methods

Randomization is
a virtual process.

what is called is the extended method found in the particular exten-
sion corresponding to the current value of the flavor field. The list
of bits returned by pack_header() will always contain all of the
header bits, regardiess of the actual flavor of the ATM cell instance.
In OpenVera, most methods should be declared virtual to give the
possibility of being adapted to the extensions of each derived class
and madintain the behavior expected by existing code that uses the
original base class.

struct atm _cell {
flavor: [UNI, NNI];

compute_hec{): uint (bits: 8) is {
var header: list of bit;
header = pack header();

yi
pack_header(}: list of bit is {
regult.add(%{vpi, clp, pt});:
}i
}i
extend UNI atm_cell {

pack_header(): list of bit is first {
result = %{gfc, vei};
};
b
extend NNI atm_cell {

pack_header(): list of bit is first {
result = vei;

}i

Although they are not explicitly documented as such, the pre-
defined method randomize{) and constraint blocks are virtual in
OpenVera. This means that, when randomizing a base class variable
that refers to a derived class instance, the derived class is being ran-
domized, subject to the constraints and overloaded pre_randomize()
and post_randomize() methods in the derived class. In e, since all
extensions are virtual, generating an instance of a base class will
always generate all of its /ike extensions and relevant when exten-
sions, based on the (possibly randomly-generated) control field val-
ues for the variant parts.
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Limitations of OpenVera and ¢’s OOP Implementation

No multiple inher-
itance,

No static data
members in e.

No class-level
enumerals in
OpenVera.

Sample 4-57.

Emulating
class-level
enumerals in
OpenVera

No truly private
data protection in
e.

Classes in OpenVera can be derived from a single base class only.
Similarly in e, structs can be like extended from a single base struct
only. It is not possible to have a class be derived from more than
one base class, nor is it possible to recombine different derivatives
of a common base class into a single class that encompasses both
extensions. ¢'s when extension can be used to emulate multiple
inheritance by using different control fields, But all when exten-
sions must originate from a single class. It is not possible to com-
bine two separate base classes into a single class.

e does not have the concept of static data members. A static field
would have a single instance and be shared by all instances of the
struct that contains it. Instead, a global data space such a sys must
be used. See Sample 4-46 for an example.

Although OpenVera has an enumerated type, the enumerals in each
type share a common name space. You cannot use the same enu-
meral in different enumerated types, like you can in VHDL. C++7s
solution is to offer class-level enumerated types. But those do not
exist in OpenVera. A solution is to use static properties to define
symbolic values, as shown in Sample 4-57. But type checking is
lost since all symbolic values are now integers.

class atm_cell {
bit flavor;
static bit UNI
static bhit NNI =

r
= o
-~ s

}

atm_cell cell = new;
cell.flavor = c¢ell ,UNI;

There is no concept of the traditional private interface to a class in
2. Access to class members can be restricted to other objects
declared in the same package or to class extensions. But since any
source file can declare itself as a member of a package, and anyone
can declare a class extension, anyone can gain access to the
restricted declarations.
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ASPECT-ORIENTED PROGRAMMING

AOQOP is the next
step after object-
orented program-
ming.

AQP fits the veri-
fication require~
ments.

Aspect-Oriented Programming (AOP), also called Subject-Oriented
Programming, has been the subject of research in the software engi-
neering community for quite some time. Several aspect- and sub-
ject-oriented extensions of popular programiming languages exist.

/ﬁispectjr’r (an aspect-oriented extension to Java) and ASPECIC-F'{*IS
{you guessed it: an aspect-oriented extension to C++), as well as
new languages designed around AOP (such as e) are examples.
More details on the aspect-oriented programming movement can be
found at:

http://aosd.net

AOP is a powerful mechanism when applied to verification. The
task of verification is to use things in ways that were not expected.
It is easy to model something that does the right thing—and that’s
what you want to use most of the time. But verification requires
breaking things to verify how a design will react to the bad data.
Verification is also concerned about ditferent things at different
times. One testcase verifies that the parity error on a packet is prop-
erly detected and dealt with. Another testcase deals with violating
the timing on the processor interface and verifying that the value of
internal registers are not adversely affected. Both are different con-
cemns on the same environment. One should not be forced to exe-
cute with the other and run the risk of interference. AOP is a
mechanism that can separate these concerns into separate aspects of
the verification environment.

The Problem with Object-Oriented Programming

QOP was thought
to solve software
engineering prob-
lems.

When Object-Oriented Programming (OOP) came along, it was
perceived as the solution to the maintenance and evolution problem
of large, complex software systems. It was thought that the strong
encapsulation of the data into objects and the tight control over its
interface through methods would allow the creation of objects that
could be evolved and maintained without affecting other objects.
Reality proves to be a little different.

17.8ee http: / /www.aspect] . org for more details.
18.8ee http: //www.aspectc. org for more details.
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Functional aspects
involve many
objects.

Derived objects
create new data

types.

Exponential
growth of derived
class combina-
tions.

The inheritance and polymorphism mechanisms in object-oriented
systems force all of the object classes into a strict hierarchy. Classes
are clearly parents, children or siblings of each other, The strong
encapsulation forces each class to be treated separately. The prob-
lem is that a new feature that must be added to the software system
never fits into this neat hierarchical structure. This new feature (or
“aspect”) involves modifying several classes, which are likely
located in separate files. The new aspect is thus diluted over several
programming structures and many different files. As more aspects
are added, they complicate the maintenance problem and the addi-
tion of future aspects. Furthermore, it is not possible to make
aspects optional. Once an aspect is implemented, it cannot be
removed without some premeditated runtime option to disable it.
Disabling an aspect can only logically remove it; the aspect remains
there physically.

I can already hear some of you asking: Why not implement an
aspect by deriving from the necessary classes and locate all of those
derivatives into a single file? Wouldn’t that centralize the imple-
mentation of an aspect and make it easy to remove it? Unfortu-
nately, no. The problem with creating a derived class is that it
creates a new type, separate from (but related to) the original class.
All of the existing code in the system still refers, uses and instanti-
ates the original class. You would therefore have to modify all of
those references to use the new derived classes to include the addi-
tional aspect.

For example, assume you have a class that models a FIFO (let’s call
it “fifo”). You add a “flag” aspect to the FIFO: flags that will indi-
cate when the FIFO is almost empty or almost full. You create a
derived class called “fifo_with_flags”. Although you have not mod-
ified the original FIFO model, you now have to modify every bit of
code that used the FIFO model to use your additional aspect (i.e.,
replace every instance of “fifo” with “fifo_with_flags™). This entire
process will have to be repeated when you add the “programmable-
almost-empty-and-almost-full-levels™ aspect on top of the “flags”
aspect.

There is another problem created with implementing aspects by
deriving classes. Most languages (and specifically e and OpenVera)
do not support multiple inheritance. Using the FIFO model example
again, assume you have a class that modifies the original FIFO with
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AQP is about
“patching” code.

synchronous read and write clocks to add an “asynchronous”
aspect. How do you deal with the two orthogonal flag-related
aspects? You can implement each aspect in a linear fashion (i.e.,
flags, then programmable levels, then asynchronous clocks or asyn-
chronous clocks, then flags, then programmable levels). But this
approach would force every FIFO used in the system to include
those aspects it does not need. Or you can create a derived class for
every possible combination of aspects (i.e., flags, flags + program-
mable levels, asynchronous clocks, asynchronous clocks + flags,
asynchronous clocks + flags + programmable levels). But this is
going to create a large number of classes that grows exponentially
with the number of orthogonal aspects.

The solution to the problem is to be able to modify the original
object classes without modifying the original source code (which is
“golden”). Aspect-oriented languages offer a well-defined mecha-
nism for adding declarations and inserting or replacing code from
the outside of a class, without actually editing the original class
implementation. I can see the hair raising on the neck of many read-
ers. I thought the same thing when [ first saw this mechanism.
“Evil!” I said. But once you understand the concept and the meth-
odology that goes with it, I am sure you will change your mind, just
as I did.

Variant Data with Variant Code

AOP is creating
variant records,
after the fact.

If data members
can vary, so should
the code.

In *“Variant Records” on page 151, I showed how variant records
should be implemented in OpenVera and e. In that particular
instance, as the anthor of the original mac_frame class, I had prior
knowledge that the virtual LAN tagging variance was required and
modeled the object accordingly. I can be even more forward-look-
ing and add variant fields for 802.2 LLC and SNAP information.
Verification exists because it is impossible for anyone to think of
everything beforehand. What if I suddenly need to support control
frames in my verification environment? With the aspect-oriented
features of e, this can be done after the fact without modifying any
existing code, simply by loading the additional code shown in Sam-
ple 4-58. Note how enumerated types can be extended with new
enumerals as needed.

Aspects involve more than adding data members or constraints.
Aspects usually require modification to methods so they can
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extend mac_frame_format: [CONTROL];

Sample 4-58.
Adding a con- type OpCOdeS: [PAUSE = 1] (bi s 16) H
trol frame extend CONTROL mac,_frame {
aspect to Sam- opdcode: opcodes;
ple 4-36 keep len_typ == 0x8808;
keep data_len <= 44;
Y:
extend PAUSE CONTROL mac_frame {
keep da == 0x0180C2000001;
quantas: uint (bits: 16);
keep data_len == 42;
keep for each in data {
it == 0x00;
Yi
}i
include the new data members in their operation, For example, add-
ing the “bad HEC” aspect to the ATM cell object, requires adding a
data member to control whether to corrupt the cell {having a cell
that is always corrupted would not be very useful). It also requires
modifying the HEC computation method to return an invalid value.
Sample 4-59 shows the bad HEC aspect that can be added to the
.ATM cell object. Notice how code is inserted at the end of the exist-
Ing compute_hec() method to corrupt the (correct) calculated HEC
value by replacing it with a random—but different—value. A soft
constraint is used on the variance control field bad_hec to maintain
the default behavior of the original atm_cell by default. When add-
Ing a new aspect, the usage of the aspect should be made optional
by encapsulating all of the extensions into a variances of the origi-
nal object,
extend atm_cell {
Sample 4-59, b -
I ad_hec: b :
Addlng'aHEC keeg :gft ggilbad hec;
corruption ys -
%#;ftcgﬁa“ extend bad_hec atm_cell {
obiect compute_hec(}: byte is also {
] gen result keeping {
it != resulg;
HH
Y
}i
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What is an aspect?

Aspects can be
simple functions,
entire testcases or
composed of sub-
aspects.

Aspects must be
managed,

The aspects used in examples so far were pretty simple. They
involved extending a single class—which could have been rela-
tively simple in a strict object-oriented hierarchy. But aspects usu-
ally have wider implications, even the simple example aspects used
so far. For example, the control frame aspect added to the ethernet
MAC frame also has implications on the MAC-layer bus-functional
model. This bus model must be able to generate control frames. It
must also be able to respond to PAUSE control frames and stop the
flow of frames for the specified number of quantas. This aspect also
affects any ethernet interface checkers. As the checker sees PAUSE
control frames flow to a MAC-layer interface, it must verify that
the interface pauses for the specified time period. An aspect is a
complete implementation of a specific function in a system.

An aspect could be the handling of corrupted data objects (which
affects the object itself, the object generators, the bus-functional
models and the self-checking structure). An aspect could be the
introduction of a new category of instruction opcodes in a processor
{affecting the opcode cobject, the code generator and the trace pre-
dictor). An aspect can be a constrained testcase that adds con-
straints on several generators and adds some synchronization
mechanism to create a particularly interesting corner case. An
aspect could be a directed debug testcase, limiting the generators to
generating a single object and the design configuration to a straight-
forward cne. An aspect could be the addition of functional coverage
measurement to an existing verification environment, involving
additions to the generators, self-checking structures, bus-functional
models or white-box monitors into the design. An aspect could be a
set of aspects, designed to re-run a troublesome testcase, involving
setting the seed to a specific value and loading all other aspects that
were used in the original simulation plus additional debugging
aspects that provide useful trace information.

However complex or simple an aspect is, regardless of how many
objects are affected by it, they are implemented in separate files that
can be added to an environment as needed. You only need to
include in an environment those aspects that are needed. Managing
aspects becomes an important part of simulation management.
Which aspects are orthogonal? Which ones are optional? In what
order should they be loaded? Which aspects depend on what other
aspects?
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Limitations of e’s AOP Implementation

More discipline is
required.

Individual exten-
sions for individ-
ual values.

Fields can only be
appended.

Everything can be extended: enumerated types, object classes,
methods, temporal definitions of events and functional coverage
groups. And when I say everything, I mean everything: every type,
every class and every method of every class. There is no mecha-
nism to control the extension points, what can be extended and
what shouldn’t. On the other hand, the existence of such a mecha-
nism would be of questionable value: Isn’t AOP about being able to
modify an existing implementation to add stuff the original author
didn’t think about? If we are limited to what the author has decided
to let us extend, aren’t we back to square one? ¢ allows complete
freedom.

But freedom requires self-discipline. In a large system, it is often
difficult to know all of the impacts of including many different
aspects, created by different persons. There has to be a discipline to
the various extensions. A few experienced individuals should be
responsible for directing how and where various aspects should be
inserted. The system must be designed to allow for insertions.
Users should use aspects-within-aspects to limit the scope of their
extensions. The topic of aspect-oriented coding methodology goes
far beyond this simple overview section. Some coding guidelines

are available in Appendix A. But just as many books were written .

on structured programming, then later on object-oriented program-
ming, many books are (and will be) written on aspect-oriented pro-
gramming.

When extending an object definition using a variance control field,
the extensions can be specified for only a single value of the control
field. For example, an “instruction” object is being extended into an
“add” and a “sub” object. If there is any additional function that is
common to both extensions, it must be replicated for each instruc-
tion——once for the control field being equal to “add”, another time
for the control field being equal to “sub”. It is not possible to extend
an object based on a control field being equal to this or that value.
This limitation is usually handled by declaring an additional virtual
field to “merge” the separate values into one, as shown in Sample
4-60. But care must be exercised to maintain the coherency
between the new virtual field and the original variance control field.

When extending an object class definition with additional fields,
the fields are physically appended to the existing fields, as if they
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Sample 4-60.

Adding vir-
tual field to
control com-
mon exten-
sions

Sample 4-61.

Placeholders

for data exten-

sions

Methods can only

extend instruction {
acs: bool;
keep aos == opcode in [ADD, SUB]:
when aos instruction {
// Common extensions to ADD and SUB
};
}i

had been declared after them. Most of the time, this is not a prob-
lem: It only becomes a problem when using the built-in pack and
unpack methods. If the additional fields should be physically
packed in the middle of the existing fields (such as the virtual LAN
fields in Sample 4-36 or the opcode and operand fields in Sample 4-
58), the resulting default packing and unpacking processes will
yield an incorrect result. Some potential data extension points are
known a priori, such as before and after the user payload in a
packet. In that case, you can introduce a placeholder physical field
at the appropriate location of the struct to be packed. Initially
empty, it can then be extended to contain additional fields, as illus-
trated in Sample 4-61 and Sample 4-62. However, the new data
fields are located in a sub-object and require an additional compo-
nent in their name when referenced.

type mac_frame_type: [RAW];

struct mac_frame_pre_data {
kind: mac_frame_ type;
H¥

struct mac_frame {
kind: mac_frame_tvpe;

len_typ: uint (bits: 16):

%pre_data: mac_frame pre data;

%data: list of byvte:

%fcs: uint {bits: 32);

keep pre_data.kind == me.kind;
Y

When extending an object class implementation with additional

be appended, sequential code in existing methods, the additional code can be
prepended or appended or prepended only to the existing code, or the additional
replaced. code can completely replace the original code. It is not possible to

add code at arbitrary points in the criginal code sequence (i.e., there
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deling

Sample 4-62.

Extending a
struct physi-
cal field in the
“middle”

Sample 4-63.
Hook meth-
ods let you
add aspects
where you
need them

Aspects are order-
dependent,

The Parallel Simulation Engine

extend mac_frame_type: [VLAN];

extend VLAN mac_frame_pre_da{:a {

fpriority: uint {(bits: 3);
$cfl : bit;

vlan_id : uint (bits: 12);
$len_typ : uint (bits: 16);

}:

extend VLAN mac_frame {
) keep len typ == 0x8100;

effectively wiped out and will never be executed. Loaded in a dif-
ferent order, {e.g., #3, then #2 then #1), the two is first extensions
could execute in reverse order, before expected code that no longer
exists. Similarly, the refurn action will abort the execution of a
method and all of the previously loaded extensions. But the refurn
action will continue with the execution of any is also extensions
loaded after the extension (or original implementation) containing
the return action.

THE PARALLEL SIMULATION ENGINE

is no is middle extension mechanism). If the aspect requires addi-
tional functionality in the body of a Sor-loop, you are out of luck.
When writing code designed to be extended, it is a good idea to add
_calls to empty methods (called hook methods) at judicious locations
in the code sequence to let an aspect add functionality wherever
appropriate. For example, Sample 4-63 shows how hook methods

?pen up the possibility of adding code to the body of nested for-
oops.

Cand C++ lack
essential concepts
for hardware mod-
eling.

pre_packet_parity(pkt: ip pkt) is empty;
pre_data_parity(data: *byte) is empty:
post_packet_parity(parity: *byte) is empty;

for each (pkt) in packets {
var parity: byte = 0x00;
me.pre_packet_parity(pkt):
for each (db) in pkt.data {
me.pre_data_parity(db):
parity A= db;
};
) me.post_packet parity(pkt, parity);

When extending an object class implementation with additional
sequential code in existing methods, the new code is inserted in ot
replaces the existing code, inciuding any previously loaded aspects.
Therefore, the order of execution of aspect-specific code will
depend on the order in which the individual aspects were loaded.
For example, if two aspects extend a method using is first, the code
related to the aspect loaded last will be executed first. If a third
aspef:t extends the same method using is only, the code from the
Previous two aspects, as well as the original method body, will be

Cand C++ can be
extended.

188

Why hasn’t C been used as a hardware description language instead
of creating Verilog, VHDL, SysternVerilog, Jeda, OpenVera, ¢ and
many others? Because the basic C language lacks three fundamen-
tal concepts necessary to model hardware designs: connectivity,
time and concurrency. Basic C++ also lacks the necessary features
to support the HVL productivity cycle: randomization, constrain-
ability and functional coverage measurement.

Connectivity, Time and Concurrency

Connectivity is the ability to describe a design using simpler blocks
then connecting them together. Schematic capture tools are perfect
examples of connectivity support.

Time is the ability to represent how the internal state of a design
evolves over time and to control its progression and rate. This con-
cept is different from execution time which is a simple measure of
how long a program runs.

Concurrency is the ability to describe actions that occur at the same
time, independently of each other.

Many extensions and coding styles for C or C++ exist that include
some or all of these concepts. SystemC is a set of C++ classes to
introduce the concept of connectivity, time and concurrency. The
SystemC Verification Library is a set of C++ classes that provides
support for randomization, constrainis and temporal expressions.
OpenVera feels like a hybrid between Verilog and C++.

Writing Testbenches: Functional Verification of HDL Models
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Connectivity, Time and Concurrency in HDLs and HVLs

Each language
implements these
concepts in differ-
ent ways.

Time can be
implemented as
absolute or unit-
less relative val-
ues.

Simulators differ
most in their
implementation of
CONCUTTENcy.

The connectivity, time and concurrency concepts are very impor-
tant to understand when learning to model using a modeling lan-
guage. Each language implements them in a different fashion, some
casier to understand than the others.

For example, connectivity in Verilog is implemented by directly
instantiating modules within modules, and connecting the pins of
the modules to wires or registers. Understanding why registers can-
not be used in some circumstances requires understanding the con-
cept of concurrency. Concurrency is described in detail in the
following sections,

In VHDL, connectivity is implemented with entities, architectures,
components and configurations. The mechanics of connectivity in
VHDL require a lot of statements and apparent duplication of infor-
mation and is often one of the most frustrating concepts to learn in
VHDL.,

In OpenVera and e the only connectivity mechanism provided is to
connect the testbench to the design under verification, They both
interface to the HDL worlds and operate through an automatically
generated shell file. The content of the skell file reflects the proper-
ties of the interface signals and must be re-generated every time
you modify the specification of the interface between OpenVera or
e and Verilog or VHDL.

The concept of time is also implemented differently. Verilog uses a
unit-less time value. The time values from multiple modules are
correlated using a scale factor specified using the “timescale com-
piler directive. In VHDL, all time values are absolute, with their
units clearly stated. OpenVera and e, time is specified as a unit-less
value. The actual unit of time is based on the timescale or resolution
of the Verilog or VHDL shell or stub file,

The implementation of concurrency is where languages and simula-
tors differ the most. Although they all use an event-driven simula-
tion process, they differ in the granularity of their concurrency, and
in the timing and focus of assignments between concurrent con-
structs. To write VHDL, it js necessary to understand the imple-
mentation of this concept because of the restrictions concurrency
imposes on the use of the language. Other languages put very few

190

Writing Testbenches: Functional Verification of HDL Models

The Parallel Simulation Engine

You write better
testbenches when
you understand
concurrency.

Concurrent sys-
tems are difficult

to describe.

Concurrent sys-
tems are described
using a hybrid
approach.

restrictions on their use. Verilog, ¢ and OpenVera rely on the author
to use concurrency appropriately. If you are limited to a cer?ain cod-
ing style, such as the synthesizeable subset, you can write fun.c-
tional Verilog code without having to understand its
implementation of the concept of concurrency.

When writing testbenches, you are not confined to such coding
styles. It becomes necessary to understand how concurrency is

- implemented and how concurrency affects the execution of the var-

ious components of the testbench.

Many testbenches are written with a severe lack of understanding
of this important concept. In the best case, the execution and overall
control structure of the testbench code is difficult to follow and
maintain. In the worst case, the testbench fails to execute properly
on a different simulator, on different versions of the same simulator
or when using different command-line options. The understan.ding
of concurrency is often what separates the experienced designer
from the newcomers.

The Problems with Concurrency

There are two problems with concurrency. The first one is in
describing concurrent systems. The second is executing them.

Since computers were created, computer scientists have tried to fig-
ure out a way to take advantage of the increased performance
offered by multi-processor machines. They are relatively easy to
build and many parallel architectures have been designed. Hov&f-
ever, they proved much more difficult to program. I do not know if
that difficulty originated with the mindset imposed by the early Von
Neumann architecture still used in today’s processors, or by an
innate limitation of our intellect.

Human beings are adept at performing relatively complex tasks. in
parallel. For example, you can drive in heavy traffic while carrying
a conversation with a passenger. But it seems that we are better at
describing a process or following instructions in a sequential man-
ner. For example, a recipe is always described using a sequence of
steps. The description of concurrent systems has evolvec_l into a
hybrid approach. Individual processes running in parallel \.mth each
other are themselves described using sequential instructions. For
example, a dessert recipe includes instructions for the cake and the
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VHDL and Verilog
models are concur-
Tent processes
described sequen-
tially.

icing as separate instructions that can be performed in parallel, but
the instructions themselves follow a sequential order.

A similar principle is used in both VHDL and Verilog. In VHDL,
the concurrent processes are the process statements (all concurrent
statements are simple shorthand forms for processes). In Verilog,
the concurrent processes are the always and initial blocks and the
continyous signal assignment statements. In e, concurrent pro-
cesses are fime-consuming method threads started using the start,
all of and first of actions, temporal expressions and on blocks. In
OpenVera, concurrent processes are the program thread and execu-
tion threads containing timing control statements started using the
forkfjoin statement The exact behavior of each concwrent con-
struct, in all languages, is described individually using sequential
statements.

Every process in a VHDL model, every always and iritial block in
a Verilog model and every thread in e and OpenVera execute in par-
allel with each other, but internally each executes sequentially. It is
a common misconception that Verilog’s initial blocks mean “initial-
ize”. Unlike VHDL, there is no initialization phase in Verilog.
Everything is implicitly initialized to x and initial blocks are identi-
cal to always blocks except that they execute only once. They are
removed from the simulation once the last statement in the initial
block executes,

Emulating Paralfelism on a Sequential Processor

Concurrent sys-
tems must be exe-
cuted on single
Processor
machines.

Multi-tasking
operating systems
are like simulators.

If you look inside the workstation that you use to simulate your
model, you will see that there is a single processor. Even if you
have a multi-processor machine, you can always write a model with
one more parallel construct than you have processors available.
How do you execute a parallel description on a single processor,
which is itself a sequential machine?

If you use a modern computer, you probably have a windowing
graphical interface. During normal day-to-day use, you are very
likely to have several windows open at once, each of them running
a different application. On multi-user machines, there may be sev-
eral others running a similar environment on the same computer.
The applications running in all of these windows appear to work all
in parallel even though there is a single sequential processor to exe-

192

Writing Testbenches: Functional Verification of HDL Models

The Parallel Simulation Engine

Simulators are
time-sharing
engines.

Simulators do not
have time slice
limits,

Processes simu-
late until they exe-
cute a timing
statement,

cute them. How is that possible? You probably answered time-shar-
ing. With time-sharing, each application uses the entire processor
for small portions of time, Each application has its turn according to
priority and activity. If the performance of the processor and operat-
ing system is high enough, the interruptions in the execution of a
program are below our threshold of detection: It appears as if each
program runs smoothly 100% of the time, in parallel with all the
others. :

A simulator works using the same principle. Each process, or
always and initial block or thread has the simulation engine for
some portion of time. Each appears to be executing in parallel with
the others when, in fact, they are each executed sequentially, one
after another. There is one important difference in the time-sharing
process of a simulator, Unlike a multi-tasking operating system, the
simulator assumes that the various parallel constructs cooperate to
obtain fair access to the simulation resources,

In an operating system, every process has a limit on the amount of
processor time it can have during each execution slice. Once that
limit is exhausted, the process is kicked out of the processor to be
replaced by another. There is no such limit in a simulator. Any pro-
cess keeps executing until it explicitly requests to be kicked out.
Thus, it is possible in a simulation to have a process grab the simu-
lation engine and never let it go. Ensuring that the parallel con-
structs properly cooperate in a simulation is a large part of
understanding how concurrency is implemented.

In VHDL, a process simulates, and keeps simulating, until a wait
statement is executed. When the wait statement is executed, the
process is kicked out of the simulation engine and replaced by
another one. This process remains “out of circulation” until the con-
dition it is waiting for is realized. Verilog has a similar model:
always and initial blocks simulate and keep simulating until 2 @, #
or a blocking assignment is executed. It also stops executing if a
wait statement whose condition is currently false is executed. In
OpenVera, threads may be interrupted only when a signal drive, @,
delay, wait_var, sync or suspend_thread statement is executed. In e,
threads may be interrupted only when a wait, sync or TCM call
action is executed. If a concurrent process does not execute some
form of an active timing statement'?, it remains in the simulation
engine, locking all other processes out.
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The Simulation Cycle

HDL, simulators
execute processes
at the current time,
then assign zero-
delay future val-
ues,

Figure 4-10,
VHDL and
Verilog
simulation
cycle

Simulators then
advance time or
starve,

Figure 4-10 shows the VHDL and Verilog simulation cycle. For a
given timestep, the simulation engine executes each of the parallel
processes that must be executed. While executing, these processes
may perform assignments of foture values using signal assignments
in VHDL or nonblocking assignments in Verilog. Once all pro-
cesses are executed (i.e., they are all waiting for something), the
simulator assigns any future values scheduled for the current
timestep (i.e. zero-delay assignments). Processes sensitive to the
new values are then executed at the delta-cycle. This cycle contin-
ues until there are no more processes that must be executed at the
current timestep and there are no more zero-delay future values.

1

Execute
] processes
Verilog 2
Delta
‘/ Cyde
Advance
Time

Assign
zero-delay

future values
VHDL

If there is nothing left to be done at the current time, there st be
either:

1. A process waiting for a specific amount of time
2. Afuture value to be assigned after a non-zero delay

If one of the conditions is present, the simulator advances time to
the next time period where there is useful work to be done. The
simulator then assigns a future value, which causes processes sensi-
tive to the signals assigned these values to be executed, or execute
processes that were waiting, If neither of the conditions are true,
then the simulation stops on its own, having reached a quiescent
state and suffering from event starvation.

19.Some timing control statements can be inactive if the condition they are
supposed to wait for is already true. They include (but are not limited
to) Verilog’s wait statement, OpenVera's sync statement and ' syne
action,
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Simulators do not
increment time
step by step.

Zero-delay cycles
are called delta
cycles,

Figure 4-11.

Time
progression
along two axis

VHDL and Verilog
behave differently
after advancing
time.

The simulator does nor increment time by a basic time unit,
timestep or time increment. Regardless of the simulation resolution,
the simulation advances time as far as necessary, in a single step, to
the next point in time where there is useful work to do. Usually, Fhat
peint in time is the delay in the clock generator. Increasing the sim-

ulation time resolution should not significantly decrease the simula-
1'20

tion performance of a behavioral or RTL mode
The state of the simulation progresses along two axes: zero-time
and simulation time. As processes are simulated and new values are
assigned after zero delays, the state of the simulation evolves and
progresses, but time does not advance. Since time does not
advance, but the state of the simulation evolves, these zero-delay
cycles where processes are evaluated and zero-delay future values
are assigned are called delta-cycles. The simulation progresses ﬁr.st
along the delta axis then along the real-time axis, as show'n in
Figure 4-11. It is possible to write models that simulate entirely
along the delta-time axis. It is also possible to write models that are
unintentionally stuck in delta cycles, preventing time from advanc-
ing,

f = Delta Cycle

Delta Time
-

14t ., d% g

Simulation Time

In Figure 4-10, you will notice that the VHDL and Verilog simula-
tion cycles differ after time advances. In VHDL, future values are
assigned before the execution of processes. In Verilog processes are
executed first. Given the choice between executing a process or
assigning a new value at the exact same point in time in the future,
VHDL assigns the new value, while Verilog executes the process
first. This may produce different simulation results between appar-
ently identical VHDL and Verilog models, such as those shown in
Sample 4-64 and Sample 4-65. A message is displayed in the Ver-

20.This is the case for some Verilog simulators.
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ilog version, but not in the VHDL one. It may also affect the behav-
ior in a co-simulation environment when a new value crosses the

VHDL/Verilog boundary,

—— —————— nmnmedule testcase;
Sample 4-64.
Verilog model reg R;
apparently
identical to a initial
VHDL model begin

R = 1'b0;

R <= #10 1'bl;

#10;

if (R !== 1'bl) $write('R is not i\n"):

end
endncdule

-  entity case is
Sample 4-65. end che;
VHDL appar-
ently identical  5rchjtecture test of case is
to a Verilog signal R: bit := '0°;
model begin

process

begin

R <= "1’ after 10 ns;

wait for 10 ns;

asgsert R = ‘1”
report "R is not 1"
severity NOTE;

wait;

end process;
end test;

The Co-Simulation Cycle

HVLs co-simulate
with HDLs.

Figure 4-12 shows the co-simulation cycle between OpenVera or ¢
and VHDL or Verilog. After completing all of the delta cycles at the
current simulation time, instead of advancing time, the e or Open-
Vera simulator may be invoked. It performs as many delta cycles
(in Specman Elite they are called simulation ticks) as it can. Then
control is returned to the HDL simulator. If assignments were made
from OpenVera or ¢ to the HDL world at the current time, they are
performed, which may cause additional HDL and HVIL delta
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cycles. If there is nothing to be done at the current simulation time,
the HDL simulator advances time.

Figure 4-12. HDL Delta
HDL. and Cycles
HVL co- 2,
sirmulation
Cyde Advance Specman/Vera
Time Delta Cycles
The HDL simula-  Notice how time is never advanced within OpenVera or e. They

tor controls time.  always execute in zero-time. Time is controlled by the associated

HDL simuvlator. That is the reason why it is more efficient to gener-
ate clocks in the HDL side than in the HVL side. Vera and Specman
Elite come with a stand-alone simulator that can simulate your code
without a Verilog or VHDL simulator. These stand-alone simulators
have no notion of real time and will simply increment the simula-
tion time by one after every set of delta cycles.

Parallel vs. Sequential

As explained earlier, humans can understand sequential descrip-
tions much easier than concurrent descriptions. Anything that is
described using a single sequence of statements is easier to under-
stand and maintain than the equivalent behavior described using
parallel constructs. The independence of their location and ordering
in the source file adds to the complexity of concurrent descriptions.
A concurrent description that would be relatively easy to under-
stand can be obfuscated by simply separating the pertinent concur-
rent statements with a few other unrelated concurrent constructs.
Therefore, functionality should be described using sequential con-
structs as much as possible.

Use sequential
descriptions as
much as possible,

A frequent misuse of sequential constructs in Verilog involves the
initialization of registers. For example, Sample 4-66 shows a clock
generator implemented using two concurrent constructs: an initial
and an always block,

However, generating a clock is an inherently sequential process: It
starts at one value then toggles between one and zero at a constant
rate. A better description, using a single concurrent construct, is
shown in Sample 4-67.

Writing Testbenches: Functional Verification of HDL Models 197



High-Level Modeling

— __ reg clk;

Sample 4-66. initial clk = 1°b0;

Misuse of con-  31yays #50 clk = ~clk;

currency in

Verilog

———————— reg clk;

Sample 4-67. initial

Properuse of  peqin

concurrency in clk = 1°b0;

Verilog forever #50 c¢lk = ~clk;
end

Deterministic
sequential behav-
ior does not need

Another less obvious case of misused concurrency happens when
the behavior of the various processes is deterministically sequential
because of the data flow. For example, Sample 4-68 shows a VHDL

concurrency. process labeled P2 that can execute only once the process labelled

P1 triggers the signal do. The P1 process then waits for the comple-
tion of process P2 before resuming its execution. The sequence of
execution cannot be other than the first half of P1, P2, then the sec-
ond half of P1.

- architecture test of bench is

Sample 4-68. signal do, done: boclean;

Deterministic  pegip

sequential exe- Pl: process

cution in begin

VHDL g

-- First half of prl

do <= not do;
walt on done;
—-— Second half of Pl

end process Pl;

P2: process
begin
wait on do;
-- All of P2

done <= nct done;
end process P2;
end test;

The implementation in Sample 4-69 shows the equivalent function-
ality, implemented using a single process. Not only is the execution
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Sample 4-69.

architecture test of bench is

ampie £ begin
Slmphfl_ed P1_2: process
sequential exe- begin
cution in -- First half of Pl
VHDL .
-- All of P2
-- Second half of »1
end process Pl_2;
end test;
flow easier to follow, but also it does not require the control signals
do and done.
Fork/Join Statement

Control flow may
alternate between
sequential and
concurrent
regions.

Figure 4-13.

Series of
sequential and
concurrent
control flows

Implement using a
forkijoin state-
ment in Verilog.

The join condition
can have many fla-
vors,

The overall control flow for a testcase often involves a sequence of
sequential steps followed by concurrent ones. For example, verify-
ing a configuration of a design may require configuring the device
through several consecutive reads and writes via the CPU interface,
then concurrently sending and receiving data. This process is then
repeated for another configuration. Figure 4-13 shows a control
flow diagram of such a control structure.

Receive Receive

Send Send

The easiest way to implement this type of control flow structure is
to use a fork/join statement in Verilog and OpenVera and an all of
action in e. This statement dynamically creates concurrent pro-
cesses within a region of sequential code. The sequential execution
resumes after the fork/join statement, once all the concurrent
regions are complete as illustrated in Figure 4-14(a). For example,
the code in Sample 4-70 waits for the maximum of Ta, Tb and Te.

In e and OpenVera, the join condition may have different flavors.
By default, the code after a fork/join statement resumes only once
all of the branches have completed their respective execution.
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Figure 4-14.

Execution
threads in
Jorkdjoin

statements

Sample 4-70,

Example of
using the fork/
Join statement
in Verilog

Sample 4-71.
Variant of the
forklioin
action in e

OpenVera's join
any does not ter-
minate ather
branches.

. j !
—, ; .
> —

> )
— >

>
fork join aII fork join any fork join first
(2} ) @

}

initial
kegin
fork
#{Ta);
#(Th) ;
#(Te);
join

end
endmodule

Sometimes it may be useful to continue execution as soon as one of
the branches completes its execution, as illustrated in Figure 4-
14(c). Sample 4-71 shows how the first of action in e is used to gen-
erate an event at regular intervals until it is eventually acknowl-
edged. :

first of {

wait cycle Rack;

while TRUE {

emit req;

wait delay(10);
}i

}:

The equivalent OpenVera code is shown in Sample 4-72. Notice the
presence of the ferminate statement after the join any. In OpenVera,
unlike e, the other branches of the fork/join any staternent keep exe-
cuting after execution resumes after the join, as illustrated in
Figure 4-14(b). Your functionality may require that they be allowed
to complete in parallel. But if they must be aborted, as is the case in
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Sample 4-72,

Jorkijoin any
statement in
OpenVera

The forkfjoin state-
ment can be dis-
abled in Verilog.

Sample 4-73.

Example of
disabling the
forkfjoin state-
ment in Ver-
ilog

VHDL has no
Jorkfjoin construct,

Sample 4-72, they must be aborted explicitly using the terminate
statement.

fork

syne (ALL, ack);
while (1) {
trigger(req);
delay (10} ;
}
join any
terminate

e's first of action and OpenVera's terminated join any/terminate
statement can be emulated in Verilog by disabling the named fork/
Jjoin statement from within the execution branches. For example,
the code in Sample 4-73 detects and reports a time-out if the
posedge on gt is not received within Tmax time units.

initial
begin
fork: wait_for gt
@ (posedge gt} disable wait_for gt;
#{Tmax) begin
S$write{"Time-out on gti\n");
disgable wait_for_gt;
end
join

end
endmodule

Unfortunately, VHDL does not have a forkfjoin statement or its
equivalent. It is necessary to emulate this behavior using separate
processes and controlling their execution via another process. Emu-
lating the functionality of the fork is simple: An event on a single
signal can be used to trigger the execution of the concurrent
regions. Emulating the functionality of the join is more compli-
cated. You could use an event on a signal for each branch of the
join, but this would require a signal for every branch. Adding a new
branch would require adding a new signal and modifying the wait
statement implementing the join.
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Sample 4-74,

Emulation of
the fork/join
statement in
VHDL

Emulate the join
statement using a
resolution fune-
tion.

package fork_join is

type join_ctl_typ is {join, fork, run);
type branches_typ is
array(integer range <») of jein_ctl_typ;

function join_all{branches: branches_typ)
return join_ctl_typ;

function join_one (branches: branches_tygp)
return join_ctl_typ;

subtype fork_join_all is join_all join_ctl_typ:
subtype fork_join_one isg Join_one "join_ctl_typ;

end fork join;

Resolution functions provide a simpler mechanism for handling an
arbitrary number of branches. A different resolution function can be
used to implement a join-all (Figure 4-14(a)) or a Join-any
(Figure 4-14(b)) functionality. Sample 4-74 and Sample 4-75 show
the implementation of the joir resolutions functions, while the code
in Sample 4-76 shows how to use it. My prayers to the VHDL gods
for a fork/join statement remain, to this day, unanswered.
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package body fork_join is

Sample 4-75.
Implementa- function join_all (branches: branches_typ}
tion of the return join_ctl_typ is
forkfjoinemu-  yooin
lation in for i in branches’range loop
VHDL if branches(i) = fork then
return fork;
end 1if;
if branches{i) = run then
return run;
end if;
end loop;

return join;
end join_all;

function join_one(branches: branches_typ)
return join_ctl_typ is
begin
for i in branches’range locp
if branches(i) = fork then
return fork;
end if;
if branches({i) = join then
return join;
end if;
end loop;
return run;
end join_one;

end fork_join;
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203



High-Level Modeling

Sample 4-76,

use work.fork_ join.all;
architecture test of bench is

Using the signal fk_jnl: fork_join_all;
emulation of begin
ﬂ’tletforkﬁto'in process
statement 1n begin
VHDL -- Fork
fk_jnl <= fork;
wait until fk_inl = fork;
fk_jnl <= run; :
-- Branch #0
fk_jnl <= join;
-- Join
walt until fk_jnl = Jeoin;
end prccess;
branchl: process
begin
fk_dgnl <= fork;
wait until fk_jnl = fork:
fk_jnl <= run;
fk_jnl <= join;
wait;
end process branchl;
branch2: process
begin
fk_jnl <= fork;
wait until fk_jnl = fork:
fk_jnl <= run;
fk_jnl <= join;
walt;
end process branch2;
end test;
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The Difference Between Driving and Assigning

Assignments write
a value to a mem-
oty location.

The last assign-
ment determines
the value.

Sample 4-77.

Assignments
to a shared
variable in
Verilog

Regular programming languages provide variables that can contain
arbitrary values of the appropriate type. They are implemented as
simple memory locations. Assigning to these variables is the simple
process of storing a value into that memory location, VHIDL vari-
ables and Verilog reg operate in the same way. When an assignment
is completed, whether blocking or nonblocking, the newly assigned
value overwrites any previous value in the memory location. Previ-
ous assignments have no effects on the final result. Regular assign-
ments behave like a multiplexer. A single value from all of the
potential contributors is somehow selected.

For example, in Sample 4-77, the value of the register R goes from
xto5to4to3to2to ], then finally to 0. Since R is a variable
shared by all three concurrent blocks, a single memory location
exists, Whatever value was assigned last by a concurrent block, is
the value stored in the variable. This is where the keyword reg
comes from for Verilog variables. Registers—or flip-flops—retain
whatever value was last loaded into them, without regard to the pre-
vious values or other concurrent sources.

module assignments;
integer R:

initial R <= #20 3;

initial

begin
R = 5; '
R = #35 2;

end

initial

begin
R <= #100 1
#15 R = 4;
#220;
R = 0Q;

end

endmodule
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Hardware descrip-
tion languages
need the concept
of a wire.

Figure 4-15.

Multiple
drivers on a
wire

Individual values
from connected
devices must be
driven continu-
ously onto the
wire.

Each concurrent
construct has its
own, single driver,

The variable is sufficient for ordinary sequential programming lan-
guages. When describing hardware, a construct that can describe
the behavior of a wire used to connect multiple devices together
must be provided. Figure 4-15 shows a wire, presumably part of a
data bus, connected to several devices. Each device, using a tristate
driver, can drive a value onto the wire. The final logic value on the
wire depends on g/l the individual values being driven, not just the
last one, like a variable,

) G b b

To model connectivity via a wire properly, any value driven by a
device must be driven continuously onto that wire, in parallel with
the other driving values. The final value on that wire depends on all
of the continucusly driven individual values.

For example, on a tristate wire, the individual driven values of z, 1,
weak-0 and z would produce a final result of 1. Figure 4-16 shows
the implementation of the wire driver in Verilog and VHDL.

In Verilog, this continuous drive is implemented using a continuous
assignment while the final value is determined by the type of wire
being used (wire, wor, wand or trireg) and the strength of the indi-
vidual driven values,

In VHDL, the continuous drive is implemented in each process that
assigns a signal while the final value is determined by the user-
defined resolution function.

Parallel drivers on a wire require concurrent constructs to describe
them. Many inexperienced engineers, when learning to code for
synthesis try to implement the design shown in Figure 4-17 using
the code shown in Sample 4-78. Unfortunately, since a single regis-
ter is used with variable assignments in sequential code, a multi-
plexer is synthesized instead of the expected parallel drivers. The
proper solution requires three concurrent constructs, one for each
driver, and is shown in Sample 4-79.
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Figure 4-16.

Implementa-
tion of
continuous
drive in
Verilog and
VHDL

Figure 4-17.

Simple design
with three
tristate drivers

Sample 4-78.

Implementa-
tion using a
multiplexer

Sample 4-79.

Implementa-
tion using
three tristate
drivers

Verilog register continuous wire
assignment
value \
@so]ution »
resltn
VHDL process + signal assign = funct”  signal
A B C
| I
SEL '/4“ 01 /L 10 11
7
module simple{A, B, C, SEL, Z);
input A, B, C;
input [1:0] SEL;
output Zi;
reg Z;
always @ (A or B or C or SEL)
begin
case (SEL)
Z2'b00: = 1'bz;
2'h01: = A;
2'b10: = B;
2'bll: = C;
endcase
end
endmodule
module simple(a, B, C, SEL, Z);
input A, B, C;
input [1:0] SEL;
output 4
assign Z = (SEL == 2'b01} ? A : 1l'bz;
assign Z = (SEL == 2'bl0) ? B 1'bz;
assign Z = (SEL == 2'bll) ? C 1'bz;
endmodule
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HVLs have no
concept of contin-
uous drivers.

e and OpenVera only deal with variables. They have no concept
equivalent to Verilog’s wire or VIIDL’s signal. In e, assignments to
HDL references are, by default, assumed to be to HDL variables. If
separate drivers are required, the HDL signal must be gualified
using a verilog or vhdl statement. In OpenVera, each output inter-
face signal is a single instance of a variable, even if it is bound to
different virtual port instances or used in separate threads. That is
why Vera will detect and flag conflicting assignments to the same
HDL signal, made at the same simulation time, even if they are
made through different virtual port bindings or execution threads. If
separate drivers are required, another interface signal, bound to the
same HDL node, must be used.

RACE CONDITIONS

The simulation
cycle creates race
conditions.

RTI. coding guide-
lines hide race
conditions

Shared variables
can create race
conditions.

It you refer to Figure 4-10 and the section titled “Emulating Paral-
lelism on a Sequential Processor” on page 192, you will see that
parallel threads are executed one after another, during the same
timestep. The order in which the threads are executed is not deter-
ministic. Race conditions exist when multiple concurrent threads
compete for the same shared resource over the same time period.

Race conditions are conveniently eliminated when limiting yourself
to writing synthesizeable code. But once you start using all the fea-
tures of the language, you may find yourself with code that is not
portable across different simulators, different versions of the same
simulator or by using different command-line arguments. Any
change in the simulation algorithm that canses concurrent threads
to be executed in a different order will yield different simulation
results.

All variables in Verilog, e and OpenVera are shared among concur-
rent threads within their scope (except for shadow variables in
OpenVera). VHDL was initially designed to make race conditions
impossible to implement. However, with the introduction of shared
variables in the 1993 version of the standard, race conditions are
now just as easily introduced in VHDL as in Verilog. Although all
of the examples are shown in Verilog, if you share variables
between concurrent execution threads in VHDL, ¢ or OpenVera,
pay close attention to the race conditions described below.
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Read/Write Race Conditions

Sample 4-80.

Example of a
read/write race
condition

The execution

order determines -

the final result.

Some read/write
race conditions
can be solved by
using nonblocking
assignments.

Prefer sequential
aver parallel code.

A read/write race condition happens when two concurrent threads
attempt to read and write the same shared variable in the same
timestep. If you look at the code in Sample 4-80, you will notice
that the first always block assigns the variable count while the sec-
ond one displays it. But both threads execute at the rising edge of
the clock.

module rw_race{clk);
input clk;

integer count;

always @ (posedge clk}
begin

count = count + 1;
end

always @ (posedge clk}
begin

$write("Count is equal to %0d4\n", count);
end

endmodule

Let’s assume that the current value of count is 10. If the first block
is executed first, the value of count is updated to 11. When the sec-
ond block is executed, the value 11 is displayed. However, if the
second block executes first, the value of 10 is displayed, the value
of count being incremented only when the first block executes later.

This type of race condition can be solved easily by using a non-
blocking assignment in Verilog or a signal in VHDL, such as shown
in Sample 4-81. Referring again to Figure 4-10: When the first
block executes, the nonblocking assignment schedules the new
value of 11, with a delay of zero, to the next timestep. When the
second block executes, the value of count is still 10. The new value
is assigned to count only when all blocks executing at this timestep
are executed, creating a delta cycle.

Using a nonblocking or signal assignment resolves the race condi-
tion by introducing an infinitesimal delay between the write and the
read operation. The unspoken assumption is that a nonblocking or
signal assignment is available. In OpenVera, nonblocking assign-
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Sample 4-81.

Avoiding a
read/write race
condition
using a non-
blocking
assignment

Sample 4-82.

module rw_race{clk);
input clk;

integer count:;

always B (posedge clk)
begin

count <= count + 1;
end

always @ (posedge clk)
begin ‘

d$write(”Count is equal to %0d\n", count);
ern

endmodule
ments can be made only to interface signals. They are not available
when assigning to a variable. In e, nonblocking assignments do not

exist at all. You should avoid creating parallel threads when a single
sequential thread would do the same job, as shown in Sample 4-82.

module rw_race(clk);

Avoiding a Ut el
read/writerace
ve t i
Condltlon integer count;
u_sing sequen- al
tial code begiis @ {posedge clk}
$write(“Count is equal to %0d\n', count);
count <= count + 1;
end
endmodule
Continuous A more insidious read/write race condition can occur in Verilog
Zf:lf:::sems cre- between always or initial blocks and continuous assignments.
' E.xamme the code in Sample 4-83 closely. What value of out will be
c!lsplayed? ‘The answer depends on the simulator and the command
.hne you are using. Without using any command-line options, Ver-
ilog-XI. says that owt is “xxxxxxxx”. VCS says that out is
00000001, Why the difference of opinion?
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Sample 4-83.

A Verilog rid-
dle

Verilog-XL does
not interrupt
blocks to execute
continuous assign-
ments.

VCS does.

This type of race
condition cannot
be avoided easily.

medule rw_race;

wire [7:0] oukt;
assign out = counkt + 1;

integer count;
initial
begin
count = 0;
swrite{"Out = %b\n",
end

out) ;

endmodule

The difference comes from their interpretation of the simulation
cycle. When the initial block assigns a new value to count, Verilog-
XL schedules the execution of the continuous assignment for the
next timestep, since it is sensitive to count. The execution of the ini-
tial block is not interrupted and the value of eut displayed is the one
it had after initialization, since the continuous assignment has not
yet been executed.

VS, on the other hand, executes the continuous assignment as
soon as count is assigned in the inirial block. The execution of the
initial block is interrupted after the assignment to count while the
continuous assignment is executed. The execution of the initial
block resumes immediately afterward. The immediate propagation
of events through continuous assignments is one of the techniques
VCS implementers have used to speed-up simulation, unfortunately
at the price of incompatibility with Verilog-XL.

Unfortunately, this type of error condition is not as easy to avoid or
eliminate as the one between two blocks. When writing behavioral
code, you must be careful about the timing between assignments to
registers in the right-hand side of a continuous assignment and
reading the wire driven by it. To make matters worse, the race con-
dition may involve non-zero delays as well as multiple continuous
assignment statements, such as in Sample 4-84. A read/write race
condition occurs if the delay between the time the right-hand side
of a continuous assignment is updated, and the time any wire on the
left-hand side is read, is equal to the propagation delay of all inter-
vening continuous assignments. Figure 4-18 illustrates the timing
of these race conditions. The only way to aveid such race condi-
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Sample 4-84,

Another read/

write race con-

dition

Figure 4-18.

Timing of a
read/write
race condition

tions is to avoid using continuous assignments for internal decoding
logic.

module rw_race;

wire [7:0] out, tmp;
integer count;
assign #1 out
assign #3 tmp

tmp - 1;
count + 1;

o

initial
begin
count = 0;
#4;
// "out” will be 0 or x's.
Swrite('Out = %b\n", out);
end

endmodule

always or
imtial block

Delay
>

Read

Write Continuous Assignment(s)

Write/Write Race Conditions

The execution
order determines
the final result.

A writefwrite race condition occurs when two concurrent threads
write to the same register at the same timestep. If you look at the
code in Sample 4-85, you will notice that both processes assign the
variable flag under different conditions and both blocks execute at
any change of the clock. This setup creates a write/write race condi-
tion if both conditions are true.

If you refer one more time to Figure 4-10 and the section titled
“Emulating Parallelism on a Sequential Processor” on page 192,

_ you will see that both processes are executed one after another, dur-

ing the same timestep. Again, the order in which the processes exe-
cute is not deterministic. Let’s assume that both conditions are true.
If the first process is executed first, the value of flag is updated to
FALSE. When the second process is executed, the value of flag is
updated to TRUE. However, if the second process executes first,
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Sample 4-85.
Example of a
write/write
race condition

Sample 4-86,
Another exam-
ple of a write/
write race con-
dition

Nonblocking
assignments do not
solve the problem.

architecture test of bench is
shared variable flag: boclean;
begin
process {clk)
begin
if (<condi>) then
flag := FALSE;
end if;
end process;

process (clk)
., begin
if (<cond2s>} then
flag = TRUE:
end if;
end process;
end test;

the value of flag is updated to TRUE, then it is updated to FALSE
when the first process executes later.

module ww_race(clk);

input clk;
reg flag:
always @ (posedge clk)
begin

if {(<condls) flag <= 0;
end

always @ {posedge clk)

begin

if (<cond2>) flag <= 1;
end
endmodule

You might be tempted to use the same solution to eliminate the race
condition as was used to eliminate the read/write race condition, as
shown in Sample 4-86. Using a signal in VHDL creates multiple
drivers, one per thread, which eliminates the race condition. Using
nonblocking assignments in Verilog simply moves the write/write
race condition from the register assignment to the scheduling of the
future value. If the first block executes first, the future value 0 is
scheduled for the next timestep. When the second block executes,
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There is no way
out of this one,

Pop quiz!

the future value 1 is also scheduled for the next timestep, overwrit-
ing the previously scheduled value of 0. If the blocks execute in the
opposite sequence, the scheduled value of 0 overwrites the previ-
ously scheduled value of 1.

There is no mechanism to prevent this type of race condition. The
logic of your model must make sure that both conditions are never
true at the same time. It would be a good practice to put an assertion
in your model to verify that it is indeed always the case.

Why can’t you have a write/write race condition on a Verilog

wire?2!

Initialization Races

There is no initial-
ization phase in
Verilog,

Initial blocks are
not executed first.

The most frequent race conditions can be found at the beginning of
the simulation, when all blocks are executed for the first time.
Unlike VHDL., Verilog has ne initialization phase. Everything is
initialized to x, then the simulation starts normally. Even the in-line
reg initialization introduced in Verilog-2001 is internally translated
into an iritial block. It is a common misconception that initial
blocks are used to initialize variables. Initial blocks are identical to
always blocks, except that they execute only once, whereas always
blocks execute forever, as if they were stuck in an infinite loop.

When the simulation is started, the iritial and always blocks are
executed one after another, in any order. The initial blocks are not
executed first—although doing so would not be illegal and some
simulators, such as Silos ITI, do just that. Most simulators, for no
other reason than to be compatible with Verilog-XL. and legacy
code containing race conditions, first execute blocks in the same

order as they are specified in the file?2. But subsequent execution
order is not so deterministic.

When simulating the code in Sample 4-87 using an XL-compliant
simulator, the first always block would be executed and suspended
immediately, waiting for the rising edge of the clock. The initial

21.Because wires are driven, not assigned. The value from each parallel
construct would contribute to the final logic value on the wire, without
overwriting the other.

22.You should avoid depending on this behavior.
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Sample 4-87.

Racecondition
at simulation
startup

There is a co-sim-
ulation initializa-
tion race too.

block is executed next, assigning the new value of 1 to the register
named ¢k, which was previously initialized to x. A transition from
% to 1 being considered a rising edge, the first always block sees the
event and is scheduled to be execuied again at the next timestep.
However, since the last always block was rot yet executed, and thus
is not waiting for the rising edge of the clock, it does not see this
edge. When the last block is finally executed, it is also immediately
suspended, waiting for the next rising edge on clk. An XL.-compli-
ant simulator would therefore execute the body of the first always
block, but not the second. However, that is not a requirement. If a
simulator chooses to execute the initial block first, the body of nei-
ther block would execute at time O.

module init_race;

reg clk;
always @ (posedge clk)
begin
Swrite('"Bleck #1 at %t\n", stime);
end

initial clk = 1/bl;

always @ (posgsedge clk)
begin

Swrite("Block #3 at %t\n", Stime}:
end

endmodule

The Vera and Specman Elite simulators are slaves to the Verilog
simulator. They are started when the appropriate call is made when
executing an initial block in the shell file. There is no way to pre-
dict nor enforce the execution order of the HVL initialization state-
ment. This inability creates a race condition between the
initialization of Verilog variables and the HVL code. Therefore,
you cannot rely on Verilog variables being appropriately initialized
when the e or OpenVera code first executes. See “Random Genera-
tion of Reference Signal Parameters” on page 239 for a more
detailed discussion and example.
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Guidelines for Avoiding Race Conditions

Semaphores

Use semaphores.

A semaphore is a
write/write race
condition put to
good use.

Race conditions can be avoided if you follow strict coding guide-
lines, which effectively restricts the usage of Verilog, OpenVera and
e to what is automatically enforced by VHDL without the use of
shared variables. These guidelines differ from typical RTL coding
guidelines because of the stricter rules on using blocking vs. non-
blocking assignment or the use of continuous assignment state-
ments. RTL coding guidelines are designed to fit the model to the
inferred hardware structure. Testbenches use the full language, and
as such require guidelines designed to fit the model to the underly-
ing simulation engine.

1. If a variable is declared outside of a concurrent thread structure,
assign to it using a nonblocking assignment (when available).
Reserve the blocking assignment for variables local to the
thread.

2. Assign to a variable from a single concurrent thread.

3. In Verilog, use continuous assignments to drive inout pins only.
Avoid using them to model internal combinatorial functions.
Prefer sequential code in a large always block to several contin-
uous assignments. :

4. Do not assign any value at time (.

The problem with guidelines is that there is no way to ensure that
everyone follows them. Competing access to shared resources by
concurrent threads is an old problem with an equally old solution:
the semaphore. When traffic coming from multiple directions (the
concurrent thread) need to cross an intersection (the shared
resource), a traffic light (the semaphore) is used to make sure that
only one direction of traffic gets to cross the intersection at the
same time. A semaphore can be used to ensure that only one thread
executes the portion of their code that can potentially create a race
condition. :

A semaphore is a shared variable that is set by a single execution
thread only if the semaphore is currently cleared. That thread is
then responsible for clearing the semaphore after completing its
access to the shared resource. Sample 4-88 shows an implementa-

tion of a serrwqgahore23 in Verilog. The in_use variable indicates
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Sample 4-88.
A Verilog
semaphore

This would not
work on a true par-
allel system.

This semaphore
may not be fair,

whether the semaphore is set. If the lock task is invoked while the
in_use variable is set to 1, the thread waits until the fock task is
eventually cleared. The unlock task clears the semaphore. A similar
implementation can be done in VHDL using a shared variable,

module semaphore;

reg in_use;

task lock;

begin

" while (in_use === 1’bl) wait (in_use !== 1'bl);
in_use = 1°bl;

end

endtask

task unlock;

in use = 1'b0;
endtask
endmedule

The key to the proper operation of the semaphore implementation
shown in Sample 4-88 is the while loop in the lock task. Let’s
assume that three concurrent threads are vying for the semaphore
by calling the lock task at the exact same simulation cycle. Because
concurrent threads are really executed sequentially, one at the time,
one of these threads (lets call it #1) will execute first. The in_use
register being equal to 1°bx, the condition of the while loop will be
false and it will set the semaphore and return from the lock task.
Threads #2 and #3 run, one after another, and get to the while loop.
Because in_use is now set to 1°bl, they enter the while loop and
wait for in_use to be not identical to 1’bl. Eventually thread #1 will
release the semaphore by calling the unlock task. This will wake up
threads #2 and #3. One of them (let’s pick #2) will run first, find the
condition of the while loop false, set the semaphore then return
from the lock task. When thread #3 runs, it finds the condition of
the while loop still true (because of thread #2) and waits again.

This simple semaphore implementation relies on the ordering of
thread execution to ensure that access is fair. If the Verilog simula-

23.Computer scientists have a very narrow definition of a semaphore that
is probably not met by this implementation. However, it is good encugh
for Verilog.
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Semaphores are
built-in in Open-
Vera and e.

tor implements a first-in-first-out execution order on the wair state-
ment (i.c. the thread that has been waiting the longest is run first),
then the semaphore will be fair. If it uses a last-in-first-out execu-
tion order (i.e. the thread with the most recent invocation of the
wait staterent executes first), then this semaphore will be com-
Pletely unfair. This simple implementation would also not work if a
thread does not suspend its execution between the unlock and lock
task calls: Since in_use had just been cleared by the unlock task, the
while loop would not be entered and the thread would acquire the
semaphore again.

¢ has a predefined semaphore object called Jocker. OpenVera comes
with predefined semaphore tasks semaphore_get() and
semaphore_put(). OpenVera also comes with a special kind of
semaphore it calls regions. Unlike regular semaphores, which pro-
tect the execution of critical code sections, regions protect access to
critical data sections. With regions, concurrent threads can reserve
the exclusive use of particular data values (e.g., addresses, identifi-
ers, opcodes). It is like applying a semaphore on a set of data values
instead of a section of code. Unless a thread releases a value in a
region, other threads cannot use it.

VERILOG PORTABILITY ISSUES

Two compliant
simulators can
produce different
results.

The primary cause
is the author’s lack
of experience.

In my many years of consulting in design verification, I have yet to
see a single testbench that simulates with identical results on Ver-
ilog-XL and VCS. Half the time, these same testbenches can pro-
duce different results by using different command-line options or
use a different version of the same simulator! Yet, both Verilog sim-
ulators are fully compliant with the IEEE standard. Most of the
time, the differences are due to race conditions (see “Race Condi-
tions” on page 208). Sometimes, the differences are due to different
interpretations of the Verilog standard: Many implementation
details were left unspecified or existing discrepancies between sim-
ulaters were also declared “nnspecified”. Simulator vendors are
thus free to implement these unspecified portions of the standard
any way they want, yielding different simulation results.

The primary cause of the simulation differences are the authors.
Verilog appears easy to learn because it produces the expected
response rather quickly. Making sure that the results are reproduc-
ible under different conditions is another matter. Learning the idio-
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syncrasies of the language are what takes time and differentiates an
experienced modeler from a new one. It is possible to write test-
benches that will simulate with identical results on all simulators
and with all command-line options.

Events from Overwritten Scheduled Values

Sample 4-89.

Overwriting
scheduled val-
ues in Verilog

Overwriting a
scheduled value
may generate an
event.

If a scheduled value is overwritten by another scheduled value, can
the original value cause an event? The answer to that question is
left undefined by the Verilog standard. If you look at the code in
Sample 4-89, will anything be displayed at time 10?

module events;
reg stobe;

always @ (strcbe)
begin
$write("Stcbe is %b\n", strobe);
end
initial
begin
strobe = 1'b0;
strobe <= #10 1'bl;

strobe <= #10 1'b0;
end

endmodule

Figure 4-19 shows the queue of scheduled future values for register
strobe just before the last statement of the initial block is about to
execute. After executing that last statement, and scheduling the new
value of 0 after 10 time units in the future, what happens to the pre-
viously scheduled value of 17 Is it removed? Is it left there? If so,
which value will be assigned to strobe 10 time units from now?
Only 0 (and thus not generating an event on strobe) or both in zero-
time (and generating an event)? The answer to this question is sim-
ulator dependent. In asynchronous descriptions, avoid overwriting
previously scheduled values using nonblocking assignments.
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Figure 4-19,

Event queue
on strobe

current +10

0 1

1.& +10

Disabled Scheduled Values

disable statements

can be used to con-

tro] loops.

Sample 4-90.

Loop control
using the dis-
able state-
ment in Ver-
ilog

Nonblocking
assignment values
may be affected by
the disable state-
ment.

The disable statement is great for modeling reset conditions (sce
“Modeling Reset” on page 383 for more details) or loop control to
emulate the behavior of VHDL's next and exit statements. The code
in Sample 4-90 shows how a loop can be controlled using the dis-
able statement.

module loop_control;
initial
begin

begin: exit_label
while (...) begin: next_label

// Force a new iteration
if (...) disable next_label;

// Break out of the lcop
if (...) disable exit_label;

end // next_label
end // exit_label

end

endmcdule

The Verilog standard does not specify what happens to still-pending
values that were scheduled using a nonblocking assignment within
a block that is disabled. Consider the code in Sample 4-91. When a
reset condition is detected, the always block modeling the CPU
interface is disabled to restart it from the beginning. What should
happen to the various values assigned to the CPU interface signals
data and dtack vsing nonblocking assignments, but that may not
have been assigned to the registers yet? Depending on the simulator
you are using, these values may be removed from the scheduled
value queue and never make it to the intended registers, or they may
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Sample 4-91.

Nonblocking
assignments
potentially
affected by a
disable state-
ment

module cpuif(...);

always
begin: if_logic

data <= #(Ta) read_wval;
dtack <= #(Tack) 1'bl;

@ (negedge ale):

data <= #(Thold) 32'bz;
dtack <= #({Thold) 1°b0;

end

always wait (reset == 1'bl)
begin

disable if_logic;

wait (reset != 1‘bl};
end
endmodule

remain unaffected by the disable statement. Avoid disabling a block

where nonblocking assignments are performed,

Output Arguments on Disabled Tasks

Qutput values may
not make it out of
disabled tasks. _

Disable the inner
block instead of
the task.

Another area where the behavior of Verilog is left unspecified is the
value of output arguments in disabled tasks. Look at the code in
Sample 4-92, The read task has an output argument returning the
value that was read. Within the task, a disable statement is used to
abort its execution at the end of the read cycle. Because the entire
task was disabled, whether the value of rdat is copied out into the
register actual used to invoke the task is not specified in the Verilog
standard.

In some simulators, the value of actual is updated with the value of
rdat, effectively completing the read cycle. In some others, the
value of actual remains unchanged, leaving the read cycle incom-
plete. This unspecified behavior can be avoided easily by disabling
the internal begin/end block inside the task instead of the task itself,
as shown in Sample 4-93.
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Sample 4-92,

Unspecified
behavior of
disabled tasks

Sample 4-93.

Avoiding
unspecified
behavior of
disabled tasks

task read;

input [7:0] radd;
cutput [7:0] rdat;
begin

if (valid) begin
rdat = data;
disable read;
end

end
endtask

initial
begin: test_procedure
reg [7:0] actual:;

read (8" hF0, actual);

end

task read;
input [7:0] radd:
output [7:0] rdat;
begin: read_cycle

if {valid) begin
rdat = data;
disable read_cycle;
end

end
endtask

Nonr-Re-Entrant Tasks

This is not an
unspecified behav-
ior.

Unless a task is declared as automatic, they are not re-entrant. Non-
re-entrant tasks are not really an unspecified behavior in Verilog.
All simulators have non-re-entrant tasks because every declaration
in a Verilog model is static. By default, no declaration is dynami-

cally allocated upon invocation of a subprogram or entry into a
block of code.
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The same memory
space is used for
all invocattons of a
task.

A second invoca-
tion clobbers the
data space of an
active prior invo-
cation.

Sample 4-94.

Non-re-entrant
task

When you declare a task or a function, the memory space for its
arguments and all other locally declared variables is allocated at
compile time. There is a single location for the subprogram and all
of its local variables. The memory is not allocated at runtime each
time the task or function is invoked. Every time a subprogram is
invoked, the same memory space is used. This reuse of memory
space does not cause problems in functions or in tasks that do not
include @, # or wait statements because the local data space is used
in a single invocation. The memory space is no longer in use by the
time a second invocation is made. However, if a task contains delay
control statements, it may still be active when a second invocation
is made.

Examine the code in Sample 4-94. The task named write contains
delay control staterents and is invoked from two different initial
blocks. In Figure 4-20(a), the content of the arguments, local to the
task, is shown after the invocation from the first initial block. While
this first invocation is waiting, the second iritial block is exe-

cuted?* and invokes the write task again, setting its local arguments
to the values shown in Figure 4-20(b). When the first invocation
resumes, it continues its execution, using the arguments provided
by the second invocation: Its data space was overwritten. The first
invocation goes on to write the value 8’h34 at address 8'h5A.

task write;
input [7:0] wadd;
input [7:0] wdat;
begin
ad_dt <= wadd;
ale <= 1'bl;
rw <= 1'bl;
@ (posedge rdy);
ad_dt <= wdat;
ale <= 1'b0;
2" {negedge rdy);
end
endtask

initial write(8‘h5a, 8'h00);
initial write(8’'haD, 8’'h34};

24.This specific execution order is only an example. The initial blocks
could execute in reverse order with equally catastrophic results.
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Verilog Portability Issues

Figure 4-20.

Task data
space

Conecurrent task
activations may
not be so obvious.

automatic tasks
are re-entrant.

Use a semaphore
to detect concur-
rent task activa-
tion.

Sample 4-95.
Using a sema-

phore in a re-
entrant task

wadd | 8'h5A wadd | $’hAD

wdat [_8h00 wdat [ 8h34
(a) )

The concurrent invocation of the same task in Sample 4-94 is pretty
obvious. But most of the time, the conditions where a task is acti-
vated more than once are much more obscure. In a large verifica-
tion environment, with numerous tasks invoked under a complex
control structure, it is very easy to concurrently activate a task and
corrupt an entire testcase without you, or Verilog, being aware of it.

In Verilog-2001, tasks can be made re-entrant by declaring them
automatic. This causes the arguments and local variables to be
dynamically created upon invocation of the task. Because these
variables are no longer static, they cannot be referred to externally
using a hierarchical name, nor can they be displayed on a waveform
viewer. Furthermore, making a task re-entrant only solves the local
data part of the problem. Separate threads still exist with the poten-
tial for race conditions to shared variables. For example, if the task
in Sample 4-94 were made re-entrant by adding the keyword auto-
matic, would the problem be solved? No. Even though each thread
would have their correct respective values of the address and data
to write, both will assign to the same shared variables ad_dt, ale
and rw, creating write/write race conditions (see “Write/Write Race
Conditions” on page 212).

The best approach to aveid this fatal condition is to use a sema-
phore to detect concurrent activation or protect against the write/
write race condition. When using aufomatic tasks, the semaphore
shown in Sample 4-88 will ensure proper operation of the task, as
shown in Sample 4-95.

semaphore sem();

task automatic write;
input [7:0] wadd;
input [7:0] wdat:
begin
sem.lock() ;

sem.unlock() ;
end
endtask
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A semaphore does
not help non-re-
entrant tasks.

Sample 4-96.

Using a sema-
phore with a
non-re-entrant
task

You can detect
concurrent task
activation.

Semaphores can only help protect shared resources if they are used
before the shared resource is accessed. The solution shown in Sam-
ple 4-93 would not work for a non-re-entrant task because the data
space of the task was already corrupted. It is too late. One solution
would be to use the semaphore before the non-re-entrant task is
invoked, as shown in Sample 4-96. What if someone forgets to use
the semaphore before calling the task?

semaphore sem();
task write;
endtask
initial
begin
gem.lock();
write(8 h5a, 8'h00);

gem.unlock() ;
end

initial

begin
sem.lock(};
write (8 haD, 8 h34};
sem.unlock(};

end

" A modified version of the semaphore can be used to detect concus-

rent activation of a non-re-entrant task. As shown in Sample 4-97,
the in_use register indicates whether the task is currently activated.
If the task is invoked while the in_use register is set to 1, the simu-
lation is terminated. Because the data space of the task has already
been clobbered, it is not possible to recover from the error. Termi-
nating the simulation is the only option. The problem must be fixed
by retiming the access to the task (usually through a semaphore) to
ensure that no concurrent invocation takes place.

Back when I was still using Verilog, I put a guard around any non-
re-entrant task. This let my model tell me immediately if I misused
it. I could immediately fix the problem, without having to diagnose
a testbench failure back to a concurrent task activation. The time
invested in adding the simple guard was well worth it. If the task I
wrote was to be used by others, the message produced by the con-
current activation detection specifically stated that the error was not

Writing Testbenches: Functional Verification of HDL Models 225



High-Level Modeling

task write;
input [7:0] wadd;
input [7:0] wdat;

Sample 4-97.
Guarding non-
re-entrant task
reg in_use;
begin
if (in_use === 1'bl) $stop;
in_use = 1/bl;

ad_dt <= wadd;
ale <= 1'bl;
rw <= 1'bl;
@ (posedge rdy);
ad_dt <= wdat;
ale <= 1'h0;
@ (negedge rdy);

in use = 1:b0;
end
endtask

in my task code, but in rheir use of it and to go look for a concurrent
activation. This has saved me many technical support calls.

Summary

SUMMARY

When writing testbenches, think function, not implementation.
Abandon the RTL coding mindset. Do not think in terms of logic,
registers and state machines. Think in terms of data transformation,
program state and execution flow.

Your first objective is to write maintainable code. Write relevant
comments that describe your intent, not the code. Optimize for per-
formance only when necessary.

Minimize the scope of your variables as much as possible. Declare
local variables in the scope where they are needed.

Package reusable subprograms and bus-functional models in suit-
able constructs to facilitate their reuse. Maintain separate name
spaces as much as possible. Make sure that it is possible to have
multiple instances of a bus-functional model connected to different
interface signals without interference or collisions.

Use data abstraction. Collect related data into records, arrays and
lists.

Separate public interfaces from private implementation. Plan your
class inheritance and take advantage of polymorphism to create

“generic bus-functional models and utility subprograms.

Understand the concurrency model used in simulating HDLs and
HVLs. It will help write more efficient models and avoid race con-
ditions. Use semaphores to protect shared resources.

Understand the unspecified portion of the Verilog standard. This
portion is a source of non-portability between different Verilog sim-
ulators, versions and command-line options.
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CHAPTER 5  STIMULUS AND RESPONSE

The purpose of writing testbenches is to apply stimulus to a design
and observe the response. That response must then be compared
against the expected behavior.

Generating stimulus is the process of providing input signals to the
design under verification as shown in Figure 5-1. From the perspec-
tive of the stimulus generator, every input of the design is an output
of the generator.

| Figure 5-1. Stimulus » Design
Stimulus Generation under
2 generation » Verification
'. Monitoring is the process of observing output signals from the
design under verification as shown in Figure 5-2. From the perspec-
] tive of the response monitor, every output of the design is an input
of the monitor.
7 Figure 5-2. Design Response

Response l}nder. | Monitoring

monitoring Verification
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This chapter
shows how to
apply stimulus and
observe response.

The next chapter
shows how to
structure a test-
bench.

In this chapter, I show how to generate stimulus and observe
responses. I also show how to abstract data flowing to and from the
design from a physical level composed of 1’s, 0°s and elapsed time
to a transaction level composed of data objects and procedures. The
greatest challenge with stimulus is making sure it is an accurate
representation of the environment, not just a simple case. When
monitoring responses, one has to be careful not to miss any data and
detect as many errors as possible.

In the next chapter, I show how to best structure the stimulus gener-
ators and response monitors to create a transaction-layer self-check-
ing environment. Constrainable random generation is then added on
top of the stimulus generators and response monitors. If you prefer
a top-down perspective, I recommend you start with the next chap-
ter then come back to this one.

REFERENCE SIGNALS

Clock signals must
be generated with
care.

Explicitely assign
1 and 0.

Sample 5-1.

Generating a
50% duty-
cycle clock

Because a clock signal has a very simple repetitive pattern, it is one
of the first and most fundamental signals to generate. It is also the
most critical signal to generate accurately. Many other signals use
clock signals to synchronize themselves. When using OpenVera or
e, I recommend generating all clock signals from VHDL or Verilog.

The behavioral code to generate a 50% duty-cycle 100MHz clock
signal is shown in Sample 5-1. To produce a more robust clock gen-
erator, use explicit assignments of values () and 1. Using a statement
like c1k = ~clk would depend on the proper initialization of the
clock signal to a value different than the default values of 1'bx or U.
Assigning explicit values also provides better control over the ini-
tial phase of the clock; you control whether the clock is starting
high or low. The same style also can be used to model clocks with
different duty cycles (i.e., different duration of the high and low
phases).

reqg <clk;
always
begin
#5;
clk = 1'b0;
#5;
clk = 17bl;
end
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Any repetitive
waveform is easy
to generate.

Figure 5-3.

Apparently
complex
waveform

Sample 5-2,

Generating a
deterministic
waveform

Waveforms with deterministic edge-to-edge relationships with an
easily identifiable period also are easy to generate. It is a simple
process of generating each edge in sequence, at the appropriate
time. For example, Figure 5-3 outlines an apparently complex
waveform. However, Sample 5-2 shows that it is simple to gener-

ate.
s LA Lo
L1 NEER

Process

begin

= ‘0*; wait for 20 ns;
<= ‘1"; wait for 10 ns;
<= '0'; wait for 10 ns;:
<= f1':; wait for 20 ns;
<= ‘07; wait for 50 ns;
‘1l7; wait for 10 ns;
<= ‘07; wait for 20 ns;
<= *17; wait for 10 ns;
<= ‘07 walt for 20 ns;
<= ‘1": wait for 40 ns;
<= ‘0'; wait for 20 ns;

nmununnnnhnninrnnnn
A
1]

—end process;

Time Resolution Issues

Integer division
may speed-up the
clock.

When generating waveforms in Verilog, you must select the appro-
priate timescale and precision to properly place the edges at the cor-
rect offset in time. When using an expression, such as cycle/2, to
compute delays, you must make sure that integer operations do not
truncate a fractional part. For example, the clock generated in Sam-
ple 5-3 produces a period of 14 ns because of truncation caused by
the integer division.

The Verilog time-  If the precision of the currently active timescale is not sufficiently
scale may affect high, delay values are rounded up or down. When this happens to
:iz;‘smmg of the delay values of clock signals, it shifts the relative position of the
’ clock edges. For example, the clock generated in Sample 5-4 pro-
duces a period of 16 ns because of rounding the result of the real

division to an integer value.
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Sample 5-3.

Truncation
errors in stim-
ulus genera-
tion

Sample 5-4,

Rounding
errors in stim-
ulus genera-
tion

Sample 5-5.

Proper preci-
sion in stimu-
lus generation

‘timescale 1lns/lns

module testbench;

reg clk;

parameter cycle = 15;

always

begin
#(cyecle/2); // Integer division
clk = 1'b0;
#({cycle/2); // Integer division
clk = 1°b1;

end

endmodule

‘timescale lna/inas

module testbench;

reg clk;

parameter cycle = 15;

always

begin
#(cyclelf2.0); // Real division
clk = 1'B0;
#lcycle/2.0); // Real division
clk = 1'bl;

end

endmeodule

Because the timescale in Sample 5-5 offers the necessary precision
for a 7.5 ns half-period, only this signal generates a 50% duty-cycle

clock signal with a precise 15 ns period.

‘timescale 1ns/100ps
module testhbhench;
reg clk;
parameter cycle = 15;
always
begin
#(eyvele/2.0);
clk = 1'b0;
#{cvele/2.0);
clk = 1'b1;
end
endmecdule
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Aligning Signals in Delta-Time

Delta delays are
functionally equiv-
alent to real
delays.

Figure 5-4,

Derived
waveform
specification

Sample 5-6,

Improperly
generating a
derived wave-
form

Watch for delta
delays in derived
waveforms.

Figure 5-5.

Delta delay in
derived
waveform

In the specification shown in Figure 5-4, the transition of ¢lk2 is
aligned with a transition on clk. There are many ways of generating
these two signals. Depending on the approach used, these aligned
transitions may occur in the same delta cycle, or in different delta
cycles. Although delta-cycle delays are considered zero-delays by
the simulator, functionally they have the same effect as real delays.

A derived waveform, such as the one shown in Figure 5-4, appar-
ently is easy to generate. A simple process, sensitive to the proper

__edge of the original signal as shown in Sample 5-6, and voila! Even

the waveform viewer shows that it is right!

clk I |
clk2 |

clk2_gen: process{clk)
begin
if ¢lk = "1’ then
clk2 <= not c<lk2;
end if;
end process clk2_gen;

The problem is not apparent visually. Because of the simulation

cycle (See “The Simulation Cycle” on page 194), there is a delta
cycle between the rising edge of the base clock signal and the tran-
sition on the derived clock signal, as shown in Figure 5-5. Any data
transferred from the base clock domain to the derived clock domain
goes through this additional delta cycle delay. In a zero-delay simu-
lation, such as a behavioral or RTL model, this additional delta-
cycle delay can have the same effect as an entire clock cycle delay.

clk | | | i
clk2 j.lA < I [ I
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Propagationdelays ~ Why is it that generating divided clocks in simulation the same way

make it work in it is done in the real world does not work? Because, in synchronous

the real world. designs, there is always a race condition between the clk-to-D-input
path and the clk-to-clk2 path of adjacent flip-flops. This constant
race condition is solved by making sure that the delay through the
clk-to-D path is always longer than the delay through the cik-to-
clk2 path. In the real world, these signal propagation delays will
never be zero. Device physics and clock skew management pro-
vides a simple solution. In zero-time behavioral or RTL models,
propagation delays are composed of delta cycles. If the number of
delia cycles in the elk-to-D path is smaller than the number of delta
cycles in the clk-to-clk2 path, an entire clock cycle delay will be
lost.

Align derived sig-  The solution is surprisingly similar to that used in the real world. It

nals in delta-time.  jg necessary to minimize the delta-cycle skew between the base and
derived signals. This skew can be completely eliminated by align-
ing their respective edges in delta time. The only way to perform
this task is to re-derive the base signal through a divide-by-1 opera-
tion, as shown in Sample 5-7 and illustrated in Figure 5-6. The base
signal is never used by other processes. Instead, they must use the
divide-by-1 signal.

Figure 5-6. clk I div-by-1 clk )
Generation of Base clk —— To design
aligned Generator | div-by-N clk

derived signals

derived_gen: process{clk)

Sample 5-7. begin

Properly gen- clkl <= clk;

era@mga if ¢lk = "1’ then
derived wave- clk? <= not clkz;
form end if;

end process derived_gen;

Differential data When generating a differential data signal pair, it is not necessary to
signalsneednotbe  align both polarities in the same delta cycle. Adding an inversion

aligned. delay in one of the phase signals only adds to the clock-to-D-input
path delay. This technique goes in the right direction to solve the
race condition. As shown in Sample 5-8, the inversion of the d sig-
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nal in the connection to the drn pin may introduce an additional deita
cycle in the d-to-dn path compared to the d-to-dp path.

wire [15:0] d;

Sample 5-8.
Generating bim cpul..., .d{d), ...);
dlffer(?ntlal degign dut (..., .dp{d), .dn{~d), ...};
data signals
Clock Multipliers

Implemented
using PLLs.

The reference
clock could
become the
derived clock.

Sample 5-9.
Generating
clock multi-
ples by divi-
sion

. Many designé. have a very high-speed front-end interface that is

driven using a multiple of a recovered clock or the lower-frequency
gystem clock. This clock multiplication is performed using an inter-
nal or external PLL (phase locked loop). PLLs are inherently ana-
log circuits. They are very costly to simulate in a digital simulator.
When an internal PLL is used, the analog component that imple-
ments the PLL is often modeled as an empty module or entity. It is
up to the testbench to create an appropriate clock multiple signal in
a behavioral fashion.

A simple strategy is to reverse the role of the reference and derived
clock. Since clock dividers are s0 easy to model, you could gener-
ate the high-frequency clock then use it to derive the lower-fre-
quency system-clock. Sample 5-9 shows the Verilog model for a
multiply-by-4 clock generator using the divide-by-4 strategy. But
this only works under two conditions: The reference clock is also
an input to the design, and the frequency of the reference clock is
known and fixed.

initial
begin
clkd <= 1'b0;
clkl <= 1'b0;
forever begin
repeat (4) begin

#10;

clk4 = ~clké:
end
clkl = ~clkl;

end
end
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Synchronize the
multipled clock to
the reference
clock,

Sample 5-10.

Synchroniz-
ing multiplied
clock to input
reference
clock

Measure the
period of the refer-
ence clock.

‘Watch that time-
scale!

The first condition can be eliminated by synchronizing the multi-
plied clock signal with the reference clock. It will be possible to
generate the multiplied clock signal even if the reference clock is
supplied by the design. Sample 5-10 shows the VHDL model of a
multiply-by-4 clock generator, synchronized with an input refer-
ence clock. But the problem of the hard-coded multiplied clock
period remains. This model assumes a reference clock with an 80 ns
period. What if the reference clock has a different frequency in a
different sirnulation run? How can we generalize this model into a
generic clock-multiplier PLL model?

process {clk)
begin
for I from 1 toc 4 loop
clk4d <= not clk4;
walt for 10 ns;
end loop;
end

Why not let the model learn the pericd of the reference signal? You
can measure the time difference between two consecutive edges,
divide this value by 4, and voila! A generic PLL model. Sample 5-
11 shows a PLL model with a continuous measure of the reference
signal, As the frequency of the reference clock signal changes, the
frequency of the multiplied clock will adapt.

When using Verilog, the usual words of caution (see “Time Resolu-
tion Issues” on page 231) apply regarding the precision of the
timescale. The computed period of the multiplied signal is a real
value that will likely have a fractional part. The actual delay value
between two consecutive edges of the multiplied clock will be the
computed value rounded to the current timescale precision. If the
size of this error is small enough compared to the period of the ref-
erence signal, this should not cause a problem.

Asynchronous Reference Signals

Figure 5-7 shows a specification for two unrelated clock signals.
They are used by two separate clock domains in the design under
verification. ¢fkI00 is a 100 MHz signal while c/k33 is a 33 MHz
signal. You could be tempted to model these two clock signals as
shown in Sample 5-12, using the higher frequency signal as a refer-
ence to generate the lower-frequency one with a divide-by-3 strat-
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Sample 5-11.

Generic clock
multiplier
model

Figure 5-7. -

Unrelated
waveform
specification

Sample 5-12.

Improperly
generating
unrelated
waveform

Alignment on
paper is not a spec-
ification.

module pll{input wire ref_clk,
ocutput reg out_clk);
parameter FACTOR = 4;

initial
begin: adaptive
real stamp, period:

out_clk <= 17b0;
@(ref_clk);
stamp = §realtime;

forever begin
@(ref_clk);
period = ($realtime - stamp)/FACTOR;
gtamp = Srealtime;

repeat (FACTOR) begin
out_clk = ~out_clk;
#{period);:
end
end
end
endmodule.

egy. This approach will indeed generate the waveforms shown in
Figure 5-7. But that is only one of the possible solutions, and one
that may not highlight some classes of problems.

ck100 _[  |__fjepiepf | _t |

k33 _[¢———pl——

clk33_gen: process(clkl{0)

variable count: integer := 0;
begin
count := count + 1;

if count = 3 then
clk33 <= not clk33;
count := 0;
end if;
end process clk33_gen;

The problem comes from the inference that the waveforms are
aligned simply because they are aligned in the figure. There are no
explicit or implicit timing relationships between the two signals as
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Generate unre-
lated signals in

separate processes.

Sample 5-13.

Generating
unrelated
waveforms

there is no timing arrow going from an edge in one waveform to an
edge in the other waveform. Drawing tools have a grid system that
facilitates drawing straight lines. But they also have the side effect
of aligning objects. When writing a specification, you must be care-
fol that these implicit alignments do not create the itlusion of a rela-
tionship. When reading a specification, do not assume a
relationship unless it is explicitly stated. ‘

Sample 5-13 shows a better way to generate these unrelated clock
signals, Since they are not synchronized in any way, they are gener-
ated using separate concurrent processes. This separation wil! make
it easy to modify the frequency of one signal without affecting the
frequency of the other. Also, notice how each signal is explicitly
skewed at the begining of the simulation to avoid having the edges
aligned at the same simulation time. This approach is a good prac-
tice to highlight potential problems in the clock-domain crossing
portion of the design. By varying these initial signal skew values, it
will be possible to verify the correct functionality of the design
across different asynchronous clock relationships.

initial
begin
¢lkl00 <= 0;
#2;
forever begin
#5;
clkl1l00 = ~clk100;
end
end

initial
begin
clk33 <= 0;
#5;
forever begin
#15;
elk33 = ~clk33;
end
end
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Random Generation of Reference Signal Parameters

All signals are
related in simula-
tion.

Asynchronous
means random.

Randomize in
OpenVera or .

In the previous section, 1 explained why unrelated signals should be
modeled as separate processes and skewed with respect to each
other to avoid creating an implicit relationship that does not exist
between them. The truth is: There is no way to accurately model
unrelated signals. Each waveform is described with respect to the
current simulation time. Because all waveforms are described using
the same built-in reference, they are all implicitly related. Even
though 1 made my best effort to avoid modeling any relationship
between the two clock signals generated in Sample 5-13, they are
related because of the deterministic nature of the simulator. Unless I
manually modify one of the timing parameters, they will maintain
the same relationship in all simulations.

When we say that two signals are asynchronous to each other, we
are saying that they have a random phase relationship, That phase
relationship will be different every time and cannot be predicted.
When 1 specified explicit skew delay values in Sample 5-13, Iintro-
duced certainty where there wasn’t any. These delay values should
be generated randomly to increase the chances that, over the thou-
sands of simulation runs the design will be subjected to, any prob-
lem related to clock skews will be highlighted.

One solution would be to call $random or using a random number

generation package in VHDL! to generate the delay values. If you
are using an HDL, that is indeed your only solution. Even though
signals are modeled in HDL, their parameters may be generated
using an HVL. You can generate signal parameters in the HVL

side? at the begining of the simulation, transfer those parameters
over to the HDL side, then use the randomly generated values in
your HDL model. This procedure requires that there be a place for
CpenVera or ¢ to deposit those randomly-generated signal parame-
ters. Sample 5-14 uses variables as a placeholder for the timing
parameters. It also provides the variables with default values justin

1. References to random number generation and linear-feedback shift reg-
ister packages in VHDL can be found in the resources section of:

http://janick.bergeron.com/wth

2. See “Random Stimulus” on page 354 for a discussion of why all ran-
dom generation should be performed in the HVL side.
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Sample 5-14.

Allowing for
randomly gen-
erated parame-
ters

case the random parameter generator is not included in the HVL
side—which it has no control over.

Sample 5-15 shows the corresponding signal parameter generator
on the HVL side. Because neither ¢ nor OpenVera support real
numbers, the timing parameters must be supplied as integer values.
To enable the randomly-generated values to cover the entire preci-
sion of the clock generator, these integer values must be interpreted
as in number of precision units and manually scaled to the scale
unit.

‘timescale 1ns/100ps
integer skew =
integer period = 100;
initial
begin
clk <= 0;
# (gkew/10.0);
forever begin
it (period/20.0);
¢lk = ~clk:
end
end

unit ¢lk_parameters {

Sample 5-15. skew : uint;
Generating period: uint:
waveform
parameters keep skew < 2 * period;
keep period in [18..22];
run() is also {
‘skew’ = me.skew;
‘period’ = me.period;
}i
bi
Wait before using ~ There is a potential problem with the code in Sample 5-14. Open-
values from the Vera and e are slave processes to the simulator. They are started by
HVL side. invoking a PLI task or foreign procedure. It is necessary for the
Verilog or VHDL model to let the HVL simulator get started, run,
generate random values then assign them back to the HDL side
before they can be used,
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Sample 5-16.
Generating
waveforms
with ran-
domly gener-
ated parame-
ters

Applying Reset

Synchronized sig-
nals must be prop-
erly modeled.

There is a race condition between the process that starts the HVL
simulator and initial blocks in the clock generator. Remember that
expli¢it variable initialization in Verilog-2001 creates implicit ini-
tial blocks. Therefore, there are three races: the assignment of skew
with the default value, getting to the "#(skew)” statement and the
assignment of skew with a random value by the HVL. The race
between the HDL simulator and the #(skew) statement is resolved
easily by adding an additional real delay to ensure that the HVL
simulator has completed its assignment of the timing parameters.
The race between the signal initialization and the HVL assignment
of random value (which would not exist in VHDL) is solved by ini-
tializing the value of the parameter variables procedurally if they
contain any unknowns.

integer skew;
integer period;

initial
begin
#2;
clk = 0;
if (rgskew === 1’'bx) skew = 0;
if {(*period === 1’bx) period = 100;

# (skew/10.0);
forever begin
#(period/20.0);
clk = ~clk;
end
end .

The first signal to be generated after the clock signals is the hard-
ware reset signal. The reset signal must be shaped properly to reset
the design correctly. The generation of a synchronous reset signal
should also reflect its synchronization with any clock signal. For
example, consider the specification for a reset signal shown in
Figure 5-8. The code in Sample 5-17 shows how such a waveform
is generated frequently.

Figure 5-8. clk l l l 1
Reset rst L] < N L
waveform 100 ns
specification
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Sample 5-17.

Improperly
generating a
synchronous
reset

Race conditions
can be created eas-
ily between syn-
chronized signals.

Sample 5-18.
Race-free gen-

eration of a
synchronous
reset

Lack of maintain-
ability can intro-
duce functional
errors.

always
begin
#50 clk = 1'0b0;
#50 clk = 1'bl;
end
initial
begin
ret = 1'00;
#150 rst = 1'bl;
#200 rst = 1'b0;
end

There are two problems with the way these two waveforms are gen-
erated in Sample 5-17. The first problem is functional: There is a
race condition between the clk and rst signals, At simulation time
150, and again later at simulation time 350, both registers are
assigned at the same timestep. Because the blocking assignment is
used for both assignments, one of them is assigned first. A block
sensitive to the falling edge of ¢lk may execute before or after rst is
assigned, From the perspective of that block, the specification
shown in Figure 5-8 could appear to be violated. The race condition
can be eliminated by using nonblocking assignments, as shown in
Sample 5-18. Both clk and rst signals are assigned between
timesteps when no blocks are executing. If the design under verifi-
cation uses the falling edge of clk as the active edge, rst is
already—and reliably—assigned.

always
begin
#50 clk <= 1'b0;
#50 clk <= 1'bl;
end

initial
begin
rat = 1'b0;
$150 rst <= 17bl;
#200 rst <= 1'b0;
end

The second problem, which is just as serious as the first one, is
maintainability of the description. You could argue that the first
problem is more serious, since it is functional. The entire simula-
tion can produce the wrong result under certain conditions. Main-
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Reference Signals

Conditions in real
life are different
than those in this
book.

Model the syn-
chronization
within the genera-
tion.

Reset may need to
be applied repeat-
edly daring a sim-
ulation,

tainability has no such functional impact. Or has it? What if you
made a change as simple as changing the phase or frequency of the
clock. How would you know to change the generation of the reset
signal to match the new clock waveform?

In the context of Sample 5-18, with Figure 5-8 nearby, you would
probably adjust the generation of the rs¢ signal. But outside of this
book, in the real world, these two blocks could be separated by hun-
dreds of lines, or even be in different files. The specification is usu-
ally a document one inch thick, printed on both sides. The timing
diagram shown in Figure 5-8 could be buried in an anonymous
appendix, while the pressing requirements of changing the clock
frequency or phase was stated urgently in an email message. And
you were busy debugging this other testbench when you received
that pesky email message! Would you know to change the genera-
tion of the reset signal as well? I know I would not.

Waiting for an apparently arbitrary delay cannot guarantee synchro-
nization with respect to the delay of the clock generation. A much
better way of modeling synchronized waveforms is to include the
synchronization in the generation of the dependent signals, as
shown in Sample 5-19. The proper way to synchronize the rst sig-
nal with the clk signal is for the generator to wait for the significant
synchronizing event, whenever it may occur. The timing or phase
of the clock generator can be modified now, without affecting the
proper generation of the rst waveform. From the perspective of a
design sensitive to the falling edge of clk, rst is reliably assigned
oné delta-cycle after the clock edge.

There is a problem with the way the rst waveform is generated in
Sample 5-19. The initial block runs only once and is eliminated
from the simulation once completed. There is no way to have it exe-
cute again during a simulation. What if it were necessary to reset
the device under verification multiple times during the same simu-
lation? An example is the “hardware reset” testcase that verifies
proper reset operation: After setting some internal register, the
hardware reset must be applied to verify that these registers return
to their reset value. Having control when reset is applied is also
very useful. This control lets testbenches perform preparatory oper-
ations before resetting the design and starting the actual stimulus.
Furthermore, when using Specman Elite, it is possible to wipe out
the current testbench and load a new one without exiting the simu-
Jation. This unloading and loading requires that the model of the
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Sample 5-19.

Proper genera-
tion of a syn-
chronous reset

Generate reset
from within a sub-
program.

Sample 5-20.
Encapsulating
the generation
of & synchro-
nous reset

always
begin
#50 clk = 1'b0;
#50 clk = 1'bl;
end
initial
begin
rst = 1'b0;
wait (clk l== 1’bx);

@ (negedge clk);

rst <= 1'bl;

@ (negedge clk);

@ (negedge clk);

rst <= 1°b0;
end

design be reset in what Specman Elite perceives to be the middle of

a very leng simulation to have the new testbench start with the
design in a known state.

The proper mechanism to encapsulate statements that you may
need to repeat during a simulation is to use a fask or a procedure as
shown in Sample 5-20. To repeat the reset signaling, simply call the
subprogram. To maintain the behavior of using an initial block to
reset the device under verification automatically at the beginning of
the simulation (which may or may not be desirable), simply call the
task in an initial block.

always
begin
#50 clk <= 1'10;
#50 clk <= 1’bil;
end

task hw_reset

begin
rat = 1'b0;
wait {(¢clk !== 1'bx);
@ (negedge clk);
rst «= 1°'bl;
@ (negedge clk);
€ (negedge clk);
rst <= 1'b0;

end

endtask

initial hw_reset;
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Reference Signals

Tasks and proce-
dures can be called
from OpenVera or
e.

Sample 5-21.

Synchronous
reset in e.

Reset signal can be
generated from
HVLs.

Are you paying
attention?

If you are using OpenVera or e, it is possible to invoke the reset task
or procedure in the HDL world from the HVL world. The testbench
is thus able to reset the design any time the reset is required. An
alternative would be to put the reset subprogram in an HVL
method, as shown in Sample 5-21. Notice how the extension to the
run() method is used to initialize the output reset signal antomati-
cally at the beginning of the simulation. An automatic resetting of
the design at the beginning of the simulation can be implemented
by starting an invocation of the Aw_reset() time-consuming method
in that same method. In OpenVera, this would be done in the class
constructor (i.e., the rew() task).

unit hw_reset {
clk: string:
rst: string;

event active_edge is £fall(’({clk})’) @sim;
hw_reset () Ractive_edge is ({

‘(rsk)’ = 1'bl;
wait [2] * cycle;

‘{rst)’ = 1'b0;
T
run{) is also {
“{rest)’ = 1°b0;
}s;

Y

Reset generation and control can be performed from the HVL test-
bench. This feature gives the testbench better control over the reset
parameters and its coordination with other device stimuli, not just
the clock.

Pop quiz: What is missing from the Aw_reset task in Sample 5-20
and Sample 5-21? The answer can be found in this footnote.?

3. The task iiw_reset contains delay control statements, These statements
should contain a semaphore to detect concurrent activation. You can
read more about this issue in “Non-Re-Entrant Tasks” on page 222,
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Simple Stimulus

SIMPLE STIMULUS

In this section, T explain how to generate deterministic waveforms.
Various techniques are developed to generate stimulus signals in
the best way. I also demonstrate how to encapsulate and package
signal generation operations using simple bus-functional models.

Applying Synchronous Data Values

There is a race
condition between
the clock and data
signal.

Sample 5-22.

Zero-delay
generation of
synchronous
data

Figure 5-9.

Synchronous
data
waveforms

The clock may be
delayed more than
the data.

Sample 5-22 shows how you could generate a zero-delay synchro-
nous data waveform. This approach is identical to the way flip-
flops are inferred in an RTL medel. As illustrated in Figure 5-9,
there is a delay between the edge on the clock and the transition on
data, but the delay is a single delta cycle. In terms of simulation
time, there is no delay. For RTL models, this infinitesimal clock-to-
Q delay is sufficient to model the behavior of synchronous circuits
properly. However, this delay assumes that all clock edges are
aligned in delta time (see “Aligning Signals in Delta-Time” on
page 233). If you are generating both clock and data signals from
the outside of the model of the design under verification, you have
no way of ensuring that the total number of delta-cycle delays
between the clock and the data is maintained and that the data sig-
nal will arrive before the clock,

sync_data_gen: process
begin
wait until c¢lk
data <= ...;
walt until clk
data <= ...;

n
o
-

~

1
-
[

wait;
end process sync_data_gen;

clk ~ L] [ [ [

| '
data _p_A <« L | -|_

For many possible reasons, the clock signal may be delayed by
more delta cycles than its corresponding data signal. These delays
could be introduced by using different I/0 pad models for the clock
and data pins. They also could be introduced by the clock distribu-
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Delay the data
from the active
clock edge.

Figure 5-10.

Delta delays in
clock path

Sample 5-23.

Non-zero-
delay genera-
tion of syn-
chronous data

tion network, which does not exist on the data signal. If the clock
signal is delayed more than the data signal, even in zero-time as
shown in Figure 3-10, the effect is the same as removing an entire
clock cycle from the data path.

Interface specifications never specify zero-delay values. A physical
interface always has a real delay between the active edge of a clock
signal and its synchronous data. When generating synchronous
data, always provide a real delay between the active edge and the
transition on the data signal, as shown in Sample 5-23, or synchro-
nize the data signal with the inactive edge of the clock.

ok T LT LT LI
clk + 4A . I I
data . I L
>«
sync_data_gen:
begin
wait until clk = “07;
data <= ... after 1 ns;
walt until clk = ‘0°;
data <= ... after 1 ns;
walt;

end process sync_data_gen;

Encapsulating Waveform Generation

A subprogram can
be used to apply
data properly.

Just as we encapsulated the application of the hardware reset signal
(see Sample 5-20), we can encapsulate the application of synchro-
nous input data. As illustrated in Figure 5-11, data signals must be
applied with a proper setup and hold time—but no more-—to meet
the input timing constraints. Instead of repeating the synchroniza-
tion for each input value, a subprogram can be used for synchroni-
zation with the input clock. It would also apply the data received as
input argument. The code in Sample 5-24 shows the implementa-
tion and use of a task applying a user-specified value to input sig-
nals according to the specification in Figure 5-11. Notice how the
input is set to unknowns after the specified hold time to stress the
timing of the interface. This technique is also known as “surround
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Simple Stimulus

Figure 5-11.

Input data
waveform
specification

Sample 5-24.
Encapsulating

the applica-
tion of input
data values

by X". Leaving the input to a constant value would not detect cases
where the device under verification does not meet the maximum
hold requirement. Note that functional verification is not the ideal
vehicle for verifying setup and hold times and is only applicable to
gate-level simulations. Verification of setup and hold times is better
accomplished using a static timing analyzer.

clk | ] | L
Bl EE NN BN

input data

task apply_values;
input [...] values;
begin
inputs <= values;
@ (posedge clk):;
# (Thold) ;
inputs <= ‘bx;
#(cycle - Thold - Tsetup);
end
endtask

initial

bhagin
hw_resget;
apply_values(...);
apply_values(...);

end

Abstracting Waveform Generation

Input vectors are
difficult to write
and maintain,

Use subprograms
to encapsulate
operations.

Using synchronous test values, also known as test vectors, to verify
a design is rather cumbersome. They are hard to interpret and diffi-
cult to specify correctly. For example, using cycle-by-cycle values
to verify a synchronously resettable D flip-flop with a 2-to-1 multi-
plexer on the input, as shown in Figure 5-12, could be stimulated
using the vectors shown in Sample 5-25.

It would be easier if the operation accomplished by the test vectors
were abstracted. The device under verification can perform only
two things:

248

Writing Testbenches: Functional Verification of HDI. Models

Figure 5-12.

2-to-1 input
sync reset D
flip-flop

Sample 5-25,

Test vectors
for 2-to-1
input sync
reset D flip-
flop

Try to apply the
worst possible
combination of
inputs.

Pass input values
as arguments to
the subprogram.

T8t ——‘
do —
dl
sel O—
ck——]
initial
begin

// values: rst, d{, dl, sel
apply_vector (4'b1110Q) ;
apply_vector (4'b0100) ;
apply_vector (4 'bllll);
apply_vector{4'b0011};
apply_vector {(4'b0010) ;
apply_vector (4'b0011);
applyv_vector (4'b1111);

end
¢ A synchronous reset
¢ Load from input d¢ or 41

Instead of providing test vectors to perform these operations repeat-
edly, why not provide subprograms that perform these operations?
All that will be left is to call the subprograms in the appropriate
order with the appropriate data.

The subprogram to perform the synchronous reset is very simple. It
needs to assert the rst input, then wait for the active edge of the
clock. But what about the other inputs? You could decide to leave
them unchanged, but is that the worst possible case? What if the
reset was not functional and the device loaded one of the inputs and
that input was set to 0? It would be impossible to differentiate the
wrong behavior from the correct one. To create the worst possible
condition, both d0 and 41 inputs must be set to 1. The sel input can
be set randomly, since either input selection should be functionally
identical. An implementation of the reset procedure is shown in
Sample 5-26.

The second operation this design can perform is to load input d0 or
dl. The task to perform this operation is shown in Sample 5-27.
Unlike resetting the design, loading data can have different input
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Sample 5-26.

Abstracting
the synchro-
nous reset
operation

Stimulus gener-
ated with
abstracted opera-
tions is easier to
write and main-
tain,

procedure reset(signal rst: out std_logic;
signal d0 : out std_logic;
signal dl : out std_logic;
signal sel: out std_logic;

signal clk: in std_logic);
begin
rst <= 1'bl;
d0 <= 1'bil;
di <= 1'bl;
sel <= random();

walt until clk = ‘1°;
wait for Theld;

rst <= 'X’;
dld <= 'X*;
dl <= ‘X'";

sel <= 'X";
wait for Taeycle - Thold - Tsetup;
end preccedure reset;

values: It can load either a 1 or a 0. The value of the input to load is
passed as an argument to the task, as well as a specification of
which input to use, d0 or 41. The worst condition is created when
the other input is set to the complement of the input value. If the
device is not functioning properly and is loading from the wrong
input, then the result will be clearly wrong.

Once operation abstractions are available, providing the proper
stimulus to the design under verification is easy to write and under-
stand. Notice how a 16-bit variable is used to pass a two-character
string identifying the name of the input pin to use. Using a name-
based specification makes it easier to understand which pin is being
loaded. Compare the code in Sample 5-28 with the code of Sample
5-25. If the polarity of the rs¢ input were changed, which verifica-
tion approach would be easiest to understand and modify?
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Sample 5-27.
Abstracting
the load opera-
tion

Sample 5-28.

Verifying the
design using
operation
abstractions

task load;
input data;
input [2*8:1] which;
begin
rst <= 1'b0;
if (which == “d0”) begin
sel <= 17b0;
d0 <= data;
dl <= ~data;
end
else if {which == “dl”) begin
gel <= 1'bl;
dl <= data;
d0 <= ~data;
end
else begin
Swrite(*Invalid input \“%s\".\n", whichj;
$finish;
end
@ {posedge clk);
#(Thold) ;
{rst, 40, di, sel} <= 4 bxmxx;
#(cycle - Thold - Tsetup);
end
endtask

initial

begin
sync_reset;
load(1'B1, “d40*):
sync_reset;

" load(1l'bl, *dl");
load({1'b0, “a0");
load(1l'bl, *d1");
sync_reset;

end
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SIMPLE OUTPUT

Generating stimulus is only half of the job. Actually, it is more like
25% of the job. The other parts, verifying that the output is as
expected and collecting functional coverage measurements, is
much more time consuming and error prone. There are various
ways the output can be checked against expectations. The outputs
have varying degrees of applicability and repeatability. In this sec-
tion, I will review techniques, some good, some not so good, for
verifying simple responses.

Visual Inspection of Response

Results can be
printed.

Sample 5-29,

ASCII view of
simulation
results

The most obvious method for verifying the output of a simulation is
to inspect the results visually. The visual display can be an ASCII
printout of the input and output values at specific points in time, as
shown in Sample 5-29.

r s
sddeqq
Time t011 b

0205 010010
0300 111110
0305 111101
0400 001101
0405 001110
05C0 001010
0505 001010
0600 001110
0605 001110
0700 111110
0705 111101

Producing Simulation Results

To print simulation
results, you must
model the signal
sampling.

The specific points in time that are significant for a particular
design or testbench are always different. Which signals are signifi-
cant is also different and may change as the simulation progresses.
If you know which time points and signals are significant for deter-
mining the correctness of the simulation results, you have to be able
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Many sampling
techniques can be
used.

You can sample at
regular intervals.

Sample 3-30.
Sampling at a
delay interval

Sample 5-31.

Sampling
based on a ref-
erence signal

You can sample
based on a signal
changing value.

to model that knowledge. Producing the proper simulation results
involves modeling the behavior of the signal sampling.

There are many sampling techniques, each as valid as the other. The
correct sampling technique depends on your needs and on what
makes the simulation results significant. Just as you have to decide
which input sequence is relevant for the functionality you are trying
to verify, you must also decide on the output sampling that is rele-
vant for determining the success or failure of the function under
verification.

The simplest sampling techinique is to sample the relevant signals at
a regular interval. The interval can be an absolute delay value, as
illustrated in Sample 5-30, or the interval can be a reference signal
such as the clock, as illustrated in Sample 5-31. Note how the
Estrobe statement is used in Verilog instead of $write and the use of
a postponed process in VHDL. Then note how the recorded values
are the final, stable values for the current simulation cycle are
ensured.

parameter INTERVAL = 10;
always
begin
# (INTERVAL) ;
$strobe(...);
end

postponed process {clk)
variable L: line;
begin
if clk’event and clk = ‘0’ then
write(L, ...):
writeline (output, L);
end if;
end process;

Another popular sampling technique is to sample a set of signals
whenever one of them changes. This technique is used to reduce the
amount of data produced during a simulation when signals do not
change at a constant interval.

To sample a set of signals, simply make a process or always block
sensitive to the signals whose changes are significant, as shown in
Sample 5-32. The set of signals displayed and monitored can be dif-
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Sample 5-32,

Sampling
based on sig-
nal changes

Sample 5-33,

Sampling
using the
$monitor task

Mirimizing Sampling

To improve simu-
lation peifor-
mance, minimize
sampling.

ferent. Verilog has a built-in task, called $monitor, to perform this

sampling when the set of displayed and monitored signals are iden-
tical.,

An example of using the $monitor task is shown in Sample 5-33. Its
behavior is different from the VHDL sampling process shown in
Sample 5-32: Changes in values of signals rst, d0, dI, sel, g, and qb
cause the display of simulation results, whereas only changes in g
and ¢b trigger the sampling in the VHDL example. Note that Ver-
ilog simulations are limited to a single active $monitor task. Any
subsequent call to $monitor replaces the previous monitor.

process {(q, gb}
variable L: line;

begin
write(L, rst & A0 & Al & sel & g & ab);
writeline(output, L);

end process;

initial
begin

Smonitor({"...*, rst, 40, dl, sel, g, gb);
and

The use of an output device on a computer slows down the execu-
tion of any program. Therefore, recording simulation output
reduces the performance of the simulation. To maximize the speed
of a simulation, minimize the amount of simulation output pro-
duced during its execution.

In Verilog, an active $monitor task can be turned on and off by
using the $monitoron and $monitoroff tasks, respectively. If you are
using an explicit sampling always block or are using VHDL, you
should include sampling minimization techniques in your model, as
illustrated in Sample 5-34. A very efficient way of minimizing sam-
pling is to have the stimulus turn on the sampling when an interest-
ing section of the testcase is entered, as shown in Sample 5-35.
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—————— process
Sample' 5:34. begin o
Minimizing wait until <interesting conditions;
sampling while (<interesting condition:> )loop

Sample 5-35,

Controlling
the sampling
from the stim-
ulus

wait on g, gb;
write{l, rost & dD & dl & sel & g & gb);
writeline (output, 1);
end loop:
end process;

initial

begin
$monitor("...", rst, 40, dl, sel, q, ab) ;
smonitoroff;
sync_reset;
load({i'bpl, *d0”);
sync_reset;
$monitoron;
leoad(1'bl, *“d1"};:
load{1'b0, “d0");
load(1'k1l, “4dl”);
sync_reset;
Smonitoroff;

end

Visual Inspection of Waveforms

Results are better
viewed when plot-
ted over time.

Waveform displays usually provide a more intuitive visual repre-
sentation of simulation results. Figure 5-13 shows the same infor-
mation as Sample 5-29, but using a waveform view. The waveform
view has the advantage of providing a continuous display of many
values over the entire simulation time, not just at specific time
points as in a text view. Therefore, you need not spec.ify or model a
particular sampling technique. The signals are contu.-mously sam-
pled, usually into an efficient database format. Sampling for wave-
forms must be turned on explicitly. It is a tool-dependent process

that is different for each language4 and each tool.

4. Verilog has a standard waveform database called thc? VCD file.
Although all waveform viewers can display simulat‘lon results fr_om a
VCD file, all of the more advanced viewers use their own proprietary
database to store additional signal information.
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Figure 5-13.

Waveform
view of
simulation
results

Minimize the
number and dura-
tion of sampled
signals.

ck ML LML

st | [ ] [
o | [
ar—1__]
sel | L

q LT 1] [

o _ [ L 1 M

The default behavior is to sample all signals during the entire simu-
lation, The waveform sampling process consumes a significant por-
tion of the simulation resources. Reducing the number of signals
sampled, or reducing the duration of the sampling, increases the
simulation performance. However, it is a trade-off with running a
simulation multiple times to obtain traces of signals that were found
to be necessary for diagnosing the cause of a functional error in a
previous iteration. During a typical verification process, all signals
should be sampled at the beginning, when the number of bugs is
significant and their location is unknown. As the code stabilizes and
simulations move to greater levels of integration, less and less sig-
nals are sampled. During regression runs, no signals are sampled,
The rule of thumb is: If you expect the simulation to fail, sample a
lot of signals; if you expect it to pass, don’t sample any,

Self-Checking Testhenches

Visual inspection
is not acceptable.

Code the response
with the stimulus.

The model of the D flip-flop with a 2-to-1 input mux being verified
has a functional error. Can you identify it using either views of the
simulation results in Sample 5-29 or Figure 5-137 How long did it

take to diagnose the problem?’

This example was for a very simple design, over a very short period
of time, and for a very small number of signals (and you knew there
was a bug). Imagine visually inspecting simulation results spanning
hundreds of thousands of clock cycles, and involving hundreds of
input and output signals. Then imagine repeating this visual inspec-
tion for every testbench and for every simulation of every test-
bench. The probability that you will miss identifying an error is

3. The logic value on input df) is ignored and a 1 is always loaded.
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equal to one. You must automate the process of comparing the sim-
ulation results against the expected outputs.

Input and Output Vectors

Specify the
expected output
values for each
clock cycle.

Sample 5-36.
Application of
input and veri-
fication of out-
put data vec-
tors

Sample 5-37.

Input/cutput
test vectors for
2-to-1 input
sync reset D
flip-flop

The first step in automating output verification is to include the
expected output with the input stimulus for every clock cycle. The
vector application task in Sample 5-24 can be easily modified to
include the comparison of the output signals with the specified out-
put vector, as shown in Sample 5-36. The testcase becomes a series
of input/output test vectors, as shown in Sample 5-37.

task apply_vector;

input [.-.] in_data;
input [...] out_data;
begin

inputs <= in_data;
@ (posedge clk);
fork
begin
# (Thold) ;
inputs <= ...’ 'bx;
end
begin
#(Td);
if (outputs !== out_data) ...;
end
#(cycle - Thold - Tsetup);
join
end
endtagk

initial

begin
// In: rst, d0, dl, sel
// out: g, gb
apply_vector (4'p1110, 27b00);
apply_vector (400100, 2'bl0);
apply_vector (4°p1111, 2'b00);
apply_vector(4'b0011, 2'bl0);
apply_vector{4'b0010, 2'b01)};
apply_vector{4'b0011, 2'bl0};
apply_vector (4bllil, 2'b00);

end
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Test vectors
require synchro-
nous interfaces.

Golden Vectors

A set of reference
simulation resuits
can be used.

Text files can be
compared using

diff.

Sample 5-38.

diff output of
comparing
ASCII view of
simulation
results

Waveforms can be
compared by a
specialized tool.

The main problem with input and output test vectors (other than the
fact that they are very difficult to specify, maintain and debug), is
that they require perfectly synchronous interfaces. If the design
under verification contains interfaces in different clock domains,
each interface requires its own test vector stream. If any interface
contains asynchronous signals, the signals have to be either exter-
nally synchronized before vectors are applied, or treated as syn-
chronous signals, therefore under-constraining the verification.

The next step toward automation of the output verification is the
use of golden vectors. It is a simple extension of the manufacturing
test process where devices are physically subjected to a series of
qualifying test vectors. A set of reference output results, determined
to be correct, are kept in a file or database. The simulation outputs
are captured in a similar format during a simulation. They are then
compared against the reference results. Golden vectors have an
advantage over input/output vectors because the expected output
values need not be specified in advance,

If the simulation results are kept in ASCII files, the simplest com-
parison process involves using the UNIX diff utility. The diff output
for the simulation results shown in Sample 5-29 is shown in Sample
5-38. You can appreciate how difficult the subsequent task of diag-
nosing the functional error will be.

ldc2
=0505 001010
=0600 001110

<0505 001001
<0600 001110

Waveform comparators can be used also. They are tools similar to
waveform viewers and are usually built into one, Waveform com-
parators compare two sets of waveforms then highlight the differ-
ences on a graphical display. The display of a waveform
comparator might look something like the results illustrated in
Figure 5-14. Identifying the problem is easier since you have access
to the entire history of the simulation in a single view.
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Figure 5-14.

Waveform
differences in
simulation
results

Golden vectors
must still be
inspected visually.

Golden vectors do
not adapt to
changes.

Golden vectors
require a signifi-
cant maintenance
effort,

ek LU
st | | | |

do | I
dl1 L
sel [ |

AR
q{gold)

e
gb(gold)

The main problem with golden simulation results is that they need
to be inspected visually to be determined as valid. This self-check-
ing technique only reduces the number of times a set of simulation
responses must be verified visually, not the need for visual inspec-
tion. The result from each testbench must s#ll be manually con-
firmed as good.

Another problem: Reference simulation results do not adapt to
modifications in the design under verification that may only affect
the timing of the result, without affecting its functional correctness.
For example, an extra register may be added in the datapath of a
design to help meet timing constraints. All that was added was a
pipeline delay. The functionality was not modified. Only the
latency was increased. If that latency is irrelevant to the functional
correctness of the overall system, the reference vectors must be
updated to reflect that change.

Reference simulation results must be inspected visually for every
testcase, and modified or regenerated whenever a change is made to
the design, each time requiring visual inspection. Using reference
vectors is a high-maintenance, low-efficiency self-checking strat-
egy. Verification vectors should be used only when a design must be
100% backward compatible with an existing device, signal for sig-
nal, clock cycle for clock cycle. In those circumstances, the refer-
ence vectors never change and never require visual inspection as
they are golden by definition.
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Separate the refer-
ence vectors along
clock domains,

Reference simulation results also work best with synchronous inter-
faces. If you have multiple interfaces in separate clock domains, it
is necessary to generate reference results for each domain in a sepa-
rate file. If a single file is used, the asynchronous relationship
between the clock domains may result in the samples from different
domains being written in a different order. The ordering difference
is not functionally relevant, but would be flagged as an error by the
comparison tool.

Self-Checking Operations

Sample 5-39.

Verifying the
sync reset
operation

Make sure the out-
put is verified
properly.

For simple operations on simple devices, it may be possible to ver-
ify the output on an operation-by-operation basis. For example, the
task shown in Sample 5-26 can include the verification that the flip-
flop was reset properly as shown in Sample 5-39. Similarly, the task
used to apply the stimulus to load data from a data input shown in
Sample 5-27 can be modified to include the verification of the cut-
put, as shown in Sample 5-40. The testcase shown in Sample 5-28
now becomes entirely self-checking,

task sync_reset;

begin
rst <= 1'bl;
dad <= 1'bl;

dl <= 1'b1;
gel <= $random;
@ (posedge clk);
#(Thold) ;
if (g !== 120 || gb I== 17bl) ...
{rst, 40, dl, sel} <= 4 bxxxx;
#{cycle - Thold - Tsetup):
end
endtask

The problem with output verification is that you can’t identify a
functional discrepancy if you are not looking at it. Using an if state-
ment to verify the outpui in the middle of a stimulus process only
looks at the output value for a brief instant. That may be acceptable,
but this technique does not say anything about the stability of that
output. For example, the tasks in Sample 5-39 and Sample 5-40
only check the value of the output at a single point in time.
Figure 5-15 shows the complete specification for the flip-flop. The
verification sampling point is shown as well.
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Make sure you
verify the output
over the entire sig-
nificant time
period.

Simple Output
———— task load;
Sample 5-49. input data;
Verifying the int [2*%8:1] which;
load operation begin
rst <= 17b0;
if (which == "d0*) begin
end
@ (posedge clk);
# (Thold) ;
if (q !== data || gb !== ~data) ...
{rst, dC, dl, sel} <= 4‘'bxxxx;
#(cycle - Thold - Tsetup):
end
endtask
Figure 5-15. clk
Timing inputs Bl Toetwp 1 Thold T
specification P —=E Td
for the flip-
flop g/qb

To verify the functionality of the design properly and completely, it
is necessary to verify that the output is stable, except for the short
period after the rising edge of the clock. That could be verified eas-
ily vsing a static timing analysis tool and a set of suitable con-
straints to verify against. If you want to perform the verification as
part of a functional simulation, the stability of the output cannot be
verified easily in the same subprogram that applies the input. The
input follows a deterministic data and timing sequence, whereas
monitoring stability requires that the testbench code be ready to
react to any unexpected changes.

Instead, it is better to use a separate monitor process, executing in
parallel with the stimulus. The stimulus subprogram can still check
the value. The stability monitor, as shown in Sample 5-41, simply
verifies that the output remains stable, whatever its value. The sta-
bility of the output signal can be verified in the stimulus procedure,
but it requires prior knowledge of the clock period to perform the
timing check.
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Sample 5-41.

Verifying the
stability of
flip-flop out-
puts

Sample 5-42,

Verifying the
load operation
and output sta-
bility

initial
begin
// wait for the first clock edge
@ (posedge clk}:
forever begin
// Ignore changes for Td after clock edge
#(Td) ;
// Watch for a change before the next c¢lk
fork: stability_mon
@ (g or gb) Swrite("..."});
@ (posedge clk) disable stability_mon;
join
end
end

procedure locad{data : std_logic;
which: string) is
begin
rst <= '0";
if which = *d0” then

end if;

walt until clk = "1°;

agsert g’stable{cycle - T4d) and

gb’atable(cycle - Td);

wait for Thold:;

rst «= '¥X';

a0 «= X',

dl <= "X’;

sel <= 'X’;

assert g = data and gb = not data;

wait for cycle - Thold - Tsetup;
end load;

COMPLEX STIMULUS

Generating inputs
may require coop-
erating with the
design.

This section introduces more complex stimulus generation scenar-
ios through the use of bus-functional models. I start with reactive
stimulus, where the stimulus or its timing depends on answers from
the device under verification. 1 also show how to aveid wasting pre-
cious simulation cycles by getting caught in deadlock conditions.

Applying stimulus to a clock or reset input or applying cycle-by-
cycle test vectors is straightforward. You are under complete con-
trol of the timing of the input signal. However, if the interface being
driven contains handshaking or flow-control signals, the generation

262

Writing Testbenches: Functional Verification of HDL Models

Complex Stimulus

of the stimulus requires cooperation with the design under verifica-
tion.

Feedback Between Stimulus and Design

Without feedback,
verification can be
under-constrained.

Figure 5-16.

Specification
for a simple
arbiter

Stimulus genera-
tion can wait for
feedback before
proceeding.

Figure 5-16 shows the specification for a simple bus arbiter. If you
were to verify the design of the arbiter using test vectors applied at
every clock cycle, as described in “Input and Qutput Vectors” on
page 257, you would have to assume a specific delay between the
assertion of the req signal and the assertion of the grt signal. Any
delay value between one and five clock cycles would be function-
ally correct, but the only reliable choice is a delay of five cycles.
Similarly, a delay of three clock cycles would have to be made for
the release portion of the verification. These choices, however,
severely under-constrain the verification. If you want to stress the
arbiter by issuing requests as fast as possible, you would want to
know when the request was granted and released, so it could be
reapplied as quickly as possible,

ck LML LMLy

req [ 1Td<5 cycles | | je2STsSe.,

gt R0 N

If, instead of using input and output test vectors, you are using
encapsulated operations to verify the design, you can modify the
operation to wait for feedback from the design under verification
before proceeding. You should also include any timing and func-
tional verification in the feedback monitoring to ensure that the
design responds in an appropriate manner. Sample 5-43 shows the
bus_request operation procedure. The procedure samples the grt
signal at every clock cycle, and immediately returns once it detects
that the bus was granted. With a similarly implemented bus_release
procedure, a testcase that stresses the arbiter under maximum load
can be written easily, as shown in Sample 5-44.
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Sample 5-43.

Verifying the
bus request
operation

Sample 5-44.

Stressing the
bus arbiter

procedure bus_request is

variable cycle_count: integer := 0;
begin
req <= ‘1';
wait until clk = *1';
while grt = ‘0’ loop
wait until clk = ’1’;
cycle_count := cycle_count + 1;
end loop;

assert 1 <= cycle_count and cycle_count <= 5;
end bus_reguest;

test_sequence: process
procedure bus_request
procedure bus_release
begin
for T in 1 to 10 loop
bus_request;
bus_release;
end loop;
assert false severity failure;
end process test_sequence;

Recovering from Deadlocks

A deadlock may
prevent the
testcase from run-
ning to comple-
tion.

A deadlocked sim-
ulation appears to
be running cor-
rectly.

There is a risk inherent to using feedback in generating stimulus:
The stimulus now depends on the proper operation of the design
under verification to complete. If the design does not provide the
feedback as expected, the stimulus generation may be halted, wait-
ing for a condition that will never occur, For example, consider the
bus_request procedure in Sample 5-43. What happens if the grt sig-
nal is never asserted? The procedure remains stuck in the while
loop and never returns.

If this were to occur, the simulation would still be running, merrily
going arcund and around the while loop. The simulation time would
advance at each tick of the clock. The CPU usage of your worksta-
tion would show near 100% usage. The only symptom that some-
thing is wrong would be that no messages are produced on the
simulation’s output log and the simulation runs for much longer
than usual. If you are watching the simulation run and expect regu-
lar messages to be produced during its execution, you would
quickly recognize that something is wrong and manually interrupt
it.
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A deadlocked sim-
ulation wastes
regiession runs,

Eliminate the pos-
sibility of dead-
lock conditions,

Sample 5-45,

Avoiding
deadlock in
the bus request
operation

Operation subpro-
grams could return
status.

But what if there is no one watching the simulation, such as during
a regression run? Regressions are large scale simulation runs where
all available testcases are executed. They are used to verify that the
functionality of the design under verification is still correct after
modifications. Because of the large number of testcases involved in
a regression, the process is automated to run unattended, usually
overnight and on many computers. If a design modification creates
a deadlock situation, all testcases scheduled to execute subse-
quently will never run, as the deadlocked testcase never terminates.
The opportunity of detecting other problems in the regression run is
wasted. It will be necessary to wait for another 24-hour period
before knowing if the new version of the design meets its functional
specification.

When generating stimulus, you must make sure that there is no pos-
sibility of a deadlock condition. You must assume that the feedback
condition youn are waiting for may never occur. If the feedback con-
dition fails to happen, you must then take appropriate action. It
could include terminating the testcase, or jumping to the next por-
tion of the testcase that does not depend on the current operation, or
retrying the operation after some delay. Sample 5-43 was modified
as shown in Sample 5-45 to avoid the deadlock condition created if
the arbiter failed and the gr7 signal was never asserted.

procedure bus_request is
variable cycle_count: integer := 0;
begin
req <= ‘1';
wait until cik = “17;
wnile.grt = ‘0° loop
wait until ¢lk = f1°*;
cycle_count := cycle_count + 1;
asgsert cycle _count < 500
report "Arbiter is not working"
severity failure;
end loop;
assert 1 <= cycle_count and cycle_count <= 5;
end bus_request;

If a failure of the feedback condition is detected, terminating the
simulation on the spot, as shown in Sample 5-45, is easy to imple-
ment in each operation subprogram. If you want more flexibility in
handling a non-fatal error, you might want to let the testcase handle
the error recovery, instead of handling it inside the operation sub-
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Sample 5-46.

program. The subprogram must provide an indication of the status
of the operation’s completion back to the testcase. Sample 5-46
shows the bus_request procedure that includes an OK status flag
indicating whether the bus was granted. The testcase is then free to
retry the bus request operation until it succeeds, as shown in Sam-
ple 5-47. Notice how the testcase takes care of avoiding its own
deadlock condition if the bus request operation never succeeds.

procedure bus_request (ok: out boolean) is

2 variable cycle_count: integer := 0;
Retorning sta-  pegip
tus in the bus ok := true;
request opera- req <= ‘1°;
tion wait until ¢lk = "1°;
while grt = "0’ loop
‘wait until ¢lk = *1°;
cycle_count := cycle_count + 1;
if cycle_count > 500 then
ok := false;
return;
end if;
end loop; ~
assert 1 <= cycle_count and cycle_count <= 5;
end bus_request;
womese——————  testcase: process
Sample 5-47. variakle granted : boolean;
Handling fail- variable attempts: integer := 0;
ures in the begin
bus_request .
procedure attempts := 0;
loop
bus_request (granted) ;
exit when granted; ‘
attempts := attempts + 1;
assert attempts <« 5
report "Bus was never granted’
severity failure;
end loop;
end process testcase;
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Asynchronous Interfaces

Test vectors under-
constrain asyn-
chronous inter-
faces.

Figuare 5-17.

Asynchronous
specification
for a simple
arbiter

Verify the syn-
chronous imple-
mentation against
the asynchronous
specification.

Behavioral code
does not require a
clock like RTL
code.

Creating synchronous input data and verifying synchronous output
values is simple. The inputs are all applied at the same time. The
outputs are all verified at the same time. And this process is
repeated at regular intervals. In every design, there is some refer-
ence signal that can be used to synchronize generation and sam-
pling operations. But many interfaces, although implemented using
synchronous finite state machines and edge-triggered flip-flops, are
specified in an asynchronous fashion. The implementer has arbi-
trarily chosen a clock to streamline the physical implementation of
the interface. If that clock is not part of the specification, it should
not be part of the verification. For example, Figure 5-17 shows an
asynchronous specification for a bus arbiter. Given a suitable clock
frequency, the synchronous specification shown in Figure 5-16
would be functionally equivalent.

| 10<Tr<30 NS,

req [, 0<Td<60 ns N
grt

Even though a clock may be present in the implementation, if it is
not part of the specification, you cannot use it to generate stimulus
nor to verify the response. You would be verifying against a partic-
ular implementation, not the specification. For example, a VME
bus is asynchronous. The verification of a VME interface cannot
make use of the clock, if a clock is used to implement that interface.
If a clock is present, and the timing constraints make reference to
clock edges, then you must use it to generate stimulus and verify
response. For example, a PCI bus is synchronous. A verification of
a PCT interface must use the PCI system clock to verify any imple-
mentation.

Testbenches are written using behavioral code. Behavioral models
do not require a clock. A clock is an artifice of the implementation
methodology and is required only for RTL code. The bus request
phase of the asynchronous interface specified in Figure 5-17 can be
verified asynchronously with the bus_request procedure shown in
Sample 5-48 or Sample 5-49. Notice how neither model of the bus
request operation uses a clock for timing control. Also, notice how

Writing Testbenches: Functional Verification of HDL Models 267



Stimulus and Response

Sample 5-48.

Verifying the
asynchronous
bus request
operation in
VHDL

Sample 5-49,

Verifying the
asynchronous
bus request
operation in
Verilog

Consider all possi-
ble failure modes.

Were you paying
attention?

the Verilog version, in Sample 5-49, uses the definitely non-synthe-
sizeable fork/join statement to wait for the rising edge of grt for a
maximum of 60 time units.

procedure bus_request (good: out boolean) is
begin

req <= '1°;

wait until grt = ‘1’ for 60 ns;

good := grt = ’'1';
end bus_request;

task bus_request;
output good;

begin
req = 1'bl;
fork: wait_for grt
#60 disable wait_for_grt;
. @ {posedge grt) disable wait_for_grt;
join
good = (grt == 1'bl};
end .
endtask

There is one problem with the models of the bus request operation
in Sample 5-48 and Sample 5-49. What if the arbiter was function-
ally incorrect and left the grz signal always asserted? Both models
would never see a rising edge on the grt signal. They would eventu-
ally exhaust their maximum waiting period then detect grt as
asserted, indicating a successful completion. To detect this possible
failure mode, the bus request operation must verify that the grs sig-
nal is not asserted prior to asserting the reg signal, as shown in
Sample 5-50.

Pop quiz: The first disable statement in Sample 5-50 aborts the
bus_request task and returns control to the calling block of the
statement. Why does it disable the begin/end block inside the task

and not the task itself?® And what is missing from all those task
implementations?’

6. For the answer see “Output Arguments on Disabled Tasks” on
page 221.
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Sample 5-50,

Verifying all
failure modes
in the asyn-
chronous bus
request opera-
tion

task bus_request;
output gcod;
begin: bus_reguest_task
if (grt == 1+bl) begin
good = 1'b0;
disable bus_request_task;

end
raeg = 1‘bl;
fork: wait_for_grt
#60 disable wait_for_grt;
@ (posedge grt) disable wait_for_grt;
Join
good = (grt == 1'bl);
end
endtask

BUS-FUNCTIONAL MODELS

Operations are
abstracted through
bus-functional
models.

Although I have avoided using the term bus-functional model, all of
the subprograms abstracting operations on the design shown earlier
are bus-functional models, albeit very simple ones. Operations, also
known as transactions, encapsulated using fasks or procedures can
be very complex. The examples shown earlier were very simple and
dealt with only a few signals. Real-life interfaces are more com-
plex. But they can be encapsulated just as easily. These transactions
may even return values fo be verified against expected values or
modify the stimulus sequence. As shown in Figure 4-2, a bus-func-
tional model abstracts transactions on a physical-level interface into
a procedural interface. Bus-functional models can be used to gener-
ate stimulus as well as monitor the response of a design. Very often,
a single bus-functional model performs both operations.

CPU Transactions

CPU interfaces are
popular bus func-
tional models.

The first image that probably came to your mind when you read the
term bus-functional model was an interface to a processor
Abstracting processor bus transactions are the most popular and
common bug-functional models. Figure 5-18 shows the specifica-

7. They all include timing control statements. They should have a sema-
phore to detect concurrent activation. See “Non-Re-Entrant Tasks™ on
page 222.
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Figuore 5-18.

Specification
for the write
cycleofa
356sx
processor

Sample 5-51.

Model for the
write cycle
operation

Bus moedels can
adapt to a differ-
ent number of wait
states.

tion for the write cycle for an Intel 3865X processor bus. Sample 5-
51 shows the corresponding bus-functional model procedure.

| 2] @] 02| @] 02| | | O
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ready N>
data —

procedure write_cycle (
wadd : in std_logic_wvector (0 to 23};
wdat : in std_logic_vector(0 to 31);

gsignal clk : in std_logic:

signal phi : in one_or_two;

signal addr : out std_logic_vector(0 to 23);
signal ads : oub std_logic; .
gignal rw : out std_logic;

signal ready: in std_logic;

signal data : out std_logic_wvector (0 to 31);
is
begin

wait on c¢lk until c¢lk = ‘1’ and phi = 2;

addr <= wadd after 4 ns;

ads <= ‘0’ after 4 ns;

W <= *'1* after 4 ng;

data <= wdat after 4 ns;

walt until clk = "1°;

wait until clk = '1°‘;
ads <= ‘l’ after 4 ns; }
wait on clk until ¢lk = ‘1’ and phi = 2 and

ready = ‘0’;
data <= (others =» ‘Z') after 4 ns;
end write_cycle;

To generate stimulus for this interface using synchronous test vec-
tors, you would have to assume a specific number of wait cycles to
complete the write operation at the right time. With behavioral
models of the transaction, you need not enforce a particular number
of wait cycles and adapt to any valid bus timing. In Sample 5-51,
the wait cycles are introduced by the fourth wait statement.
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Bus-functional
procedures can
return values.

Sample 5-52.

Model for the
read cycle
operation

You can perform
read-modify-write
operations.

All of the abstracted transactions shown so far were unidirectional.
Data always flowed from the testbench through the bus-functional
procedure where the data was applied to the design and outputs
were checked for correctness. What if determining the correctness
of the output required visibility over multiple operations? What if
only the relevant output values for this testcase were known and the
others were to be ignored? Bus-functional procedures can just as
easily sample output and return it instead of comparing the output
against supplied expected values. The sampled value can then be
processed by the testbench where the value can be dealt with
according to the needs of the testcase. For example, Sample 5-52
shows the read operation of the 3865X interface. Notice how the
value read is not compared against an expected value. The value
read is instead returned through an out argument,

task read_cycle |
input [23:0] radd;
output [31:0] rdat;
begin
while {phi != 2} @ {posedge clk}:
addr <= #4 radd;
ads <= #4 1'b0;
rw <= #4 1'b0;
repeat (2) @ (posedge clk);
ads <= #4 '1';
while (phi-!= 2 || ready != 1'b0)
@ (posedge clk);
rdat = data;
end
endtask

It now becomes easy to perform read-modify-write operations.
With abstracted transactions and the full power of a high-level lan-
guage, you can perform a read operation that returns whatever
value was read at the specified address, manipulate the read value,
then use the modified value in a subsequent write transaction. Sam-
ple 5-33 shows a portion of a testcase where a read_cycle proce-
dure, similar to the write_cycle procedure shown in Sample 5-51,
is used to perform a read-modify-write operation,
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Sample 5-53.

Performing a
read-modify-
write opera-
tion

test_procedure: process
constant cfg_reg: std_logic_vector (0 to 23)
= "0000000000000001100010110*;
variable tmp: std_logic_vector (31 downto 0):
begin

i386sx_pkg.read_cyclel(cfg_reg, tmp, ...);
tmp (13 downto 9) := *01101*;
1386gx_pkg.write_cycle(cfg_reg, tmp, ...);

end process test_procedure;

From Bus-Functional Procedures to Bus-Functional Model

Bus-functional
procedures are
packaged into bus-
functional models,

Procedures are re-
entrant, but bus-
functional models
are not.

Put a semaphore
on the bus-func-
tional model.,

A complete bus-functional model is composed of many bus-func-
tional procedures. Each transaction supported by a particular physi-
cal interface is implemented using a different procedure. Collected
together using the encapsulation mechanism described in “Encap-
sulating Bus-Functional Models” on page 137, they create a com-
plete bus-functional model for a specific interface.

In “Non-Re-Entrant Tasks” on page 222, I discussed the problem
caused by non-re-entrant procedures. Now that Verilog, like all of
the other langunages, offers re-entrant subprograms, you’d think that
the problem would be solved, right? Wrong. Sample 5-54 shows the
¢ bus-functional procedures for the i386SX packed into a single
unit. Although the read and write methods are fully re-entrant, what
happens if two separate threads concurrently invoke the same
method? The local data space of the method is preserved, but not
the value of the (global and static) interface signals. The two con-
current transactions will interfere with each other trying to execute
at the same time on the same physical interface. The same problem
will oceur even if two different bus-functional procedures in the
same bus-functional model are concurrently invoked.

If two or more threads must read from (or write to) the design, the
operations must be coordinated. To pipeline concurrent operations,
it is necessary to put a semaphore around the entire bus-functional
model. Much like a semaphore was used to detect concurrent invo-
cation of a non-re-entrant task in Verilog, it will be used to detect
concurrent invocation of transactions in a non-re-entrant bus-func-
tional model. Sample 5-55 shows how an OpenVera bus-functional
model can be protected against concurrent transactions using a
semaphore. It is up to you to decide, should the semaphore detect a
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Sample 5-54.

Packaged
1386SX bus-
functional
model

Sample 5-55.

unit i386_sx {
clk : string;
addr: string;

read{radd: uint (bits: 24)): uint
“@pclk is {
‘{me.addr)’ = raddr;

i
write({wadd: uint (bits: 24),
wdat: uint)
Gpclk is {
‘{me.addr}’ = raddr;

Y
}i

concurrent transaction, whether to wait for the bus-functional to
become available or to terminate with an error.

class 1386_sx { .
local i386_sx_port sigs:

Pmtec':e‘i local integer sgem;
1386SX bus- L
functional task new(i386_sx_port sigs) {
model this.sigs = sigs;
this.sem = alloc(SEMPAHORE, 0, 1, 1);
}
function bit [31:0] read(bit [32:0] radd) {
void = semaphore_get(WAIT, this.sem, 1);
@0 this.sigs.saddr = raddr;
séfnaphore_put(this.sem, 1);
)3
task write{bit [23:0] wadd,
bit [31:0] wdat) {
void = semaphore_get (WAIT, this.zem, 1);
@0 this.sigs.saddr = raddr;
semaphore_ put{this.sgem, 1});
}
}
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HVLs are not sig-
nificantly better
for physical-level
bus-functional
models.

HVLs are signifi-
cantly better above
the physical level.

HVLs can call
HDL subpro-
grams,

You must under-
stand the HVL
interface model.

With all of my enthusiasm for HVLs expressed in earlier chapters,
why are almost all of the examples in the previous sections in Ver-
ilog or VHDL? Because HVLs are not significantly better than
HDLs in implementing physical-level bus-functional models. Low-
level bus-functional models simply translate an abstracted represen-
tation of a transaction into 1’s and 0’s applied or sampled at individ-
nal clock cycles. Regardless of the langrage used, signal
assignments, signal sampling and waiting for the next clock edge
require almost identical statements because it is the same level of
abstraction,

HVLs become clearly superior once we stop dealing with the phys-
ical interface because of their support for high-level data types,
object-orientedness and randomization. HVLs allow for a simpler
transaction-layer interface, The transaction descriptors will be eas-
ier to model and manipulate using object-oriented methods and
transaction descriptors will be easier to generate using constrain-
able randomization.

If you have existing bus-functional model subprograms, there is no
need to re-implement them in OpenVera or ¢. Both languages have
a mechanism for inveking Verilog tasks and VHDL procedures. If
you have to implement a new bus-functional model, you probably
are better off implementing it in the HVL you are using. It will let
you design a more flexible and higher-level transaction-layer inter-
face.

HVLs are interfaced to the HDL simulation through the simulator’s
external program interface. When that interface was implemented,
the HVL designers created specific mechanisms for driving and
sampling signals in Verilog or VHDL. It is important to understand
that interfacing mechanism to create functionally correct bus-func-
tional models and minimize the performance impact of crossing the
HDIL/HVL boundary.

OpenVera’s Interface Model

Function and tim-
ing are separated.

In OpenVera, the function of a physical-level bus-functional model
is described using sequential statements in a task or a function. The
timing of the physical signals—what is the clock signal, what is the
active edge, when they are sampled with respect to the active edge,
how much hold time before a new value is driven—is defined sepa-
rately in the interface or in the signal_conneci() task. Interface sig-
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Interface declara-
tions are synchro-
nous.

Figure 5-19.

OpenVera
interface
model

That was a good
and a bad idea.

nals (potentially from different interface declarations) are then
collected into a single virfual port binding. Through the virtual port
binding, the functional description can drive and sample interface
signals without needing to be aware of their detailed timing,

Figure 5-19 shows a functional and timing diagram of OpenVera’s
interface model. The active edge of the clock is specified on a per-
signal and per-direction basis (using the P or N prefix). The sample
(Ts) and hold (Th) times are also specified for each signal and each
direction. Whenever a signal drive or sample statement is executed,
if the simulation is not aligned currently with the active edge of the
signal, the simulation waits for the next active edge before perform-

ing the drive or Sampleg. Each drive or sample statement specifies a
number of cycle delays using the @ notation. An @1 specification
always will wait until the next active edge. But an @0 specification
may wait until the next active edge if the simulation is not currently
aligned with it, as described previously. Note how referring to inter-
face signals within an expression completely bypasses the interface
synchronization (but not delay) mechanism.

OpenVera
exprfasync
HDL _D_i OpenVera
input input
#Ts /]\ data
OpenVera clock
output  —] (Eg%t
A #n > T
! Ts |t
HDL clock ——I
@ )

Separating timing from function was a good idea. The separation
lets the user of a bus-functional model shift the sampling or driving
peint with respect to the clock without having to modify the code. It
lets that same user modify the clock signal from an internal to an
external source with similar ease. When writing the bus-functional
model, you can concentrate on the functionality without worrying
about whether you are on the correct phase of the clock or remem-
bered to insert that #4 delay before all nonblocking assignments to
the data signal. This design decision has its trade-off. If the inter-

8. This is similar to the behavior of the sync statement in e.
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Prefer static inter-
face signals.

face signals are not sampled using an internally consistent clocking
scheme, the bus-functional model is simply not going to work as
intended. Unexpected and unwanted delays will be inserted,
stretching a single-cycle operation over multiple cycles.

Static signal bindings i.e., using interface and bind declarations, are
more efficient than dynamic bindings i.e., using signal_connect()
tasks. With static binding, the OpenVera-to-HDL interface is able to
perform additional optimizations that are not available if dynamic
binding is used. With dynamic binding, Vera must keep all poten-
tially useful information available at all times because new signal
connections can be created at any time. Executing a single
signal_connect makes it impossible to perform the static binding
optimization. Note that the previous sentence sald “executing”. You
can have calls to the signal_connect task in your code without hav-
ing to use the dynamic binding mode if it is never execuied.

Bus-Functional Models in OpenVera

Any method can
sample, drive or
wait for time.

Don’t wait for
clock edges.

In OpenVera, any method can sample or drive a signal, even a con-
structor, This means that time can advance in any method because
of the implicit synchronization that occurs when sampling or driv-
ing signals. This flexibility is fine when writing a bus-functional
model. But from a user’s perspective, it becomes impossible to
know whether time will advance when I invoke a method. It may be
important that I perform an operation in zero-time. Therefore, it is
valuable to know-if a method can suspend the current execution
thread or not,

Use a naming convention to identify methods that include timing
control statements. Personally {and in this book), T use the “_t” suf-
fix to indicate such methods. You should rever cause the execution
thread to be suspended in a constructor (i.e., the new task). Would
you expect time to advance between the two declarations in Sample

- 5-567 When initializing output signals in a constructor, use the non-

blocking assignment to avoid suspending the execution thread.

OpenVera's syntax for physical-level operations is borrowed
heavily from Verilog. It is therefore natural to use a Verilog coding
style when coding using OpenVera. But this style can create prob-
lems. Consider the synchronous ROM bus-functional mode! in
Sample 5-57. This is obviously a model for a synchronous interface
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Sample 5-56.

Constructor
with timing
control state-
ments

Sample 5-57.

Verilog cod-
ing style in
OpenVera

class 1386_sx {
task new{) {

@0 ads = 1°bl;
@0 data = ‘bz;

i386_sx cpu
eth mii eth

new;
new;

o

active on the rising edge of the clock, right? Wrong. Timing syn-
chronization is specified in the interface declaration, not by the
sequential statements. Should the port signals be bound to the inter-
face declaration shown in Sample 5-58, everything will operate on
the falling edge of the clock. This style may introduce unexpected
delays in performing a read transaction. Worst, it may return the
wrong results under certain pathological signal timing conditions.
A better style, shown in Sample 5-59, goes along with the Open-
Vera flow and lets the interface synchronization mechanism define
the timing of the transaction. Another advantage of this second
style is the use of the windowed expect to detect the case where the
ROM does not respond and avoid the deadlock condition found in
if rdy is never asserted.

port rom_port {
clk, addr, c¢s, rdy, data

class sync_ronm_bfm {
rom_port sigs;

function bit [31:0] read(bit [31:0] radd) {
@ (posedge sigs.3clk):
sigs.$addr = radd;
sigs.scs = 1'bl;
while (!sigs.s$rdy) {
@ {posedge sigs.sclk);
}
read = gigs.$data;
sigs.sads = 1'b0;
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Sample 5-38.

Interface dec-
laration active
on the nega-
tive edge

Sample 5-59.

Proper coding
style in Open-
Vera

Dataedges involve
sampling.

Sample 5-60.

‘Waiting for
synchronous
data signal

Figure 5-20.

Synchronous
signal tfiming
in OpenVera

interface rom_if {

input clk CLCCK;
output [31:0] addr NHOLD #1;
output cs NHOLD #1:
input rdy NSAMPLE #-1:
input [31:0] data NSAMPLE #-1;

class sync_rom _bfm {
rom _port sigs;

function bit [31:0] read(bit [31:0] radd) {
@l sigs.saddr = radd;
B0 sigs.$cs = 1'bi;
@,100 sigs.Srdy == 1'bl;
read = sigs.sdata;
@0 sigs.gads = 1'b0;

}

Another Verilog coding style that likely will yield unexpected
results is shown in Sample 5-60. Waiting for an edge on an input
signal still involves its sampling by the interface clock. The edge
will be detected only when two consecutive samples have a differ-
ent value, as illustrated in Figure 5-20. Refer to “Asynchronous
Signals in OpenVera” on page 281 for details on how to sample and
wait for input signals asynchronously.

interface arb_1if {
input ¢lk CLOCK hdl_node “top.cilk”;
input reg NSAMPLE #-2 hdl_node “top.reg”;
input ack NHOLD #1 hdl_node *“top.ack”;
} .

@ (posedge rom_if.req);

opelk T 1L T L
111 m
top.req [ T 1 1m
_|—' I I 1 | mfg—@(posedge arb_if.reaq)
LI R R I A |
2 0 2 0
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Always drive
using nonblocking
assignment.

Sample 5-61.

Single edge
interface dec-
laration

Sample 5-62.

Potential time
advance

Sample 5-63.

A common technique to avoid race conditions between clock and
data signals is to sample and drive the signals on different clock
edges. OpenVera’s sample and hold interface delays eliminates this
requirement when both the source and destination of a signal use
the same clock signal. But you can always count on the ingrained
habits of engineers. As the writer of a bus-functional model, you
have no control over the binding of the virtual port signals. A user
may very well decide to drive the signals on the other edge of the
clock. Furthermore, certain protocols where the clock and data sig-
nals are generated together require this 180 degree phase between
sampling and driving.

Using the interface declaration in Sample 5-61, the code in Sample
5-62 will not cause the time to advance after the assertion of the rdy
signal. But should the interface be modified to use different clock
edges Lo sample and drive signals, as shown in Sample 5-63, the
same code section will cause time to advance by a full clock cycle.
To avoid this dependency on interface declaration, either perform
all of your sampling before any driving, or use the nonblocking
assignment, as shown in Sample 5-64

interface rom_if {
input clk CLOCK;
output [31:0] addr PHOLD #1;
output cs PHOLD #1;
input rdy PSAMPLE #-1;
input [31:0] data PSAMFLE #-1;

@,100 sigs.rdy == 1’bl;
gigs.cs = 17b0;
read = sigs.data;

interface rom_if ({

input clk CLOCK;
Dual edge output [31:0] addr NHOLD  #1;
interface dec- output cs  NHOLD  #1;
laration input rdy PSAMPLE #-1;
input [31:0] data PSAMPLE #-1;
}
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Sample 5-64.

Avoiding
unexpected
time advances

Do not mix clock
domains.

Sample 5-65.

Multiple clock
domains
bound to sin-
gle port

Provide an inter-
face declaration
template.

@,100 sigs.rdy == 1‘bl;
sigs.cs <= 1'b0;
read = gsigs.data;

The potential time advance in Sample 5-62 can be made even worse
if signals from different clock domains are bound to the same vir-
tual port. For example, the binding shown in Sample 5-65 will
result in unpredictable behavior that will depend on the frequency
and phase relationship of the clocks in each interface. You should
avoid mixing signals from different clock domains in the same port
binding.

interface rom_in_if {

input clk CLOCK:
output [31:0] addr PHOLD #1;
output cs PHOLD #1;

e

interface rom_out_if {

input clk CLOCK;
input rdy PSAMPLE #-1;
input [31:0] data PSAMPLE #-1;

}

bind rom_port rom port_0 {
addr rom_in if.addr;
Ccs rom_in_if.cs;
rdy rom_out_if.rdy;
data rom_out_if.data;

jaH

Functional correctness of OpenVera bus-functional models depends
on the comrectness of the interface signals they are bound to.
Despite having the best intentions, users of your bus-functional
model will get it wrong. You will then be blamed for writing a bus-
functional model that does not work, To help avoid this situation
and facilitate the integration of your bus-functional model in some-
one else’s testbench, always provide a template for a suitable infer-
JSace declaration and port binding. Identify which parameters can be
modified, and which ones should not.
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All interface sig-
nals are synchro-
nous.

Drive and sample
using async.

Specify #0 sample
and hold delays.

There is no way of declaring an interface signal as asynchronous.
Every interface declaration contains a reference clock signal. Even
if you leave out the declaration for the CLOCK signal (which is a
valid syntax), a default clock is used by the interface. This default
clock is the signal named SystemClock in the generated shell file. If
you let an interface declaration default to the default clock and do
not specify a waveform on the default clock signal, the simulation
is going to hang on the first attempt to drive or sample a signal in
that interface declaration. Why? Because Vera will attempt to syn-
chronize the operation with an active edge that will never occur. A
poor solution would be to declare all input signals as CLOCK sig-
nals, but that would require one interface declaration per input sig-
nal. Furthermore, it would not be possible to declare multi-bit input
signals as clock signals are restricted to single-bit signals.

Recall that referring to interface signals in expressions is asynchro-
nous. But any sampling (and that includes @ posedge statements)
or driving operation requires going through the synchronous inter-
face. For asynchronous operations, sampling and driving operaticns
can be qualified with the async suffix to bypass the alignment with
the active clock edge. Any assignment operation will execute
immediately, without waiting for the next active edge (assuming
@0 is specified of course).

There is one catch: The async qualifier only bypasses the synchro-
nization mechanism. Like the reference in expressions, this quali-
fier does not bypass the sample or hold delay mechanisms. If you
specified a bold delay of #2 on an output interface signal, driving it
with the async qualifier will produce the assigned value on the
HDL signal two timescale units later. Conversely, sampling an
input signal with a sample delay of #2 will sample the value it had
two timescale units prior to the current simulation time. The effect
of the async qualifier and of the sample and hold delays is shown in
Sample 5-66 and iilustrated in Figure 5-21. When declaring an
asynchronous signal, locate in any inferface declaration, but specify
#0 for sample and hold delays.
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Sample 5-66.

Asynchronous
signals in
OpenVera

Figure 5-21.

Asynchronous
signal timing
in OpenVera

interface sigs {
input reqg( PSAMPLE #0 hdl_node “top.reg”:
input reqg2 PSAMPLE #-2 hdl_node “top.reg”;
input rwQG PSAMPLE #0 hdl_node “top.rw”
input rw2 PSAMPLE #-2 hdl_node “top.rw”;
output ack0 PHOLD #0 hdl node “top.ack”;
output ack2 PHOLD #2 hdl_node “top.ack”

}

program asynchronous {
@ (posedge sigs.reqgl async);
sigs.,ackZ = 1'b0 async;
sigs.ack0 = 1'b0 async:

top.req o
top.rw T
sigs.rw0 | _:_"_'
sigs.rw2 !

| —T———@{posedge sigs.regl async)

| ———@(posedge sigs.reg2 async)

11
top.ack2 KXKKRKK]
t0p.ack0 XXXXK | |

10 l lI2

Synchronous Bus-Functional Models in e

Bus functional
procedures are
time-consuming
methods.

Unlike OpenVera, ¢ makes a clear distinction between methods that
may cause time to advance, and those that do not. Thus, it is very
easy to enforce (or rely on) a zero-delay execution sequence
because methods (which consume no time) are not allowed to
invoke time-consuming methods (TCMs), nor arc methods allowed
to execute time consuming actions, such as wair. The latter are dif-
ferent from the former in that TCMs have, in their declaration, an
event identified as a default sampling event. Sample 5-67 and Sam-
ple 5-68 show two method declarations in e. The first one is a regu-
lar method. The second is a time-consuming method. For a bus-
functional procedure, the second declaration style must be used.
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Sample 5-67.
Declaration of

non-TCM

Sample 5-68.
Declaration of

TCMine

TCMs imply syn-
chronous opera-
tions with
asynchronous sig-
nals.

unit eth_mii {
event clk is rise{’(clk)’) @Gsim;

send{frame: mac_frame) is {

wait aycle Geclk; // Illegal

}i
ri

unit eth_mii {
event clk is rise(’(clk)’) @sim;

send(frame: mac_frame) @clk is {

wait cyecle; // OK ("@clk” implicit)
ri
Yi

The event specified in the time-consuming method declaration will

be used as the default sampling event in all wait and sync actions”

inside the method. For example, in Sample 5-68, no explicit sam-
pling event was specified in the wair action. The sampling event
used is the TCM default sampling event. Furthermore, there is an
implicit “sync cycle” action at the beginning of the TCM. This
forces the execution of the TCM to be aligned with its default sam-
pling event at all times. This consistent reference to a single event
makes the execution of a TCM inherently synchronous to that event
{which may or may not be related to a clock signal).

Even though e’s interface to HDL signals is asynchronous, TCMs
naturally map to synchronous bus-functional transactions. Because
all of the events you'll be waiting for will be sampled (by default)
using the TCM sampling event, the signal sampling and driving
points will always be aligned with that event. If that default sam-
pling event happens to be a clock, then the TCM will be synchro-
nous 1o that clock. Sample 5-69 shows a bus-functional procedure
to transmit an ATM cell on a Utopia Level 1 interface illustrated in
Figure 5-22.

9. In e, sequential statements are called “actions™.
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Sample 5-69.

Utopia Level 1
transmit bus-
functional pro-
cedure

Figure 5-22,
Utopia Level 1
PHY-to-ATM
cell
transmission
with octect-
level
handshake

There is no race
condition between
the HDL and ¢
simulator,

Output delays can
be specified.

unit phy_utopial {
RxClk: string;
event rx_clk is risge(’(RxClk)’) @sim;

tx({cell: atm_cell) @rx c¢lk is {
var bytes: list of byte;

for each in bytes {
sync true(’ (RxEnb)’
' (RXEmpty) * 1bl;
‘ (RxDataj} ’ it;
walt cycle;

= 1'b0));

}i
' {RxEmpty)’ = 1'b0;

The mention that signal sampling and driving points were aligned
should have raised race-condition alarm bells in your mind. Fortu-
nately, race conditions do not actually occur because of the co-sim-
ulation cycle used (see “The Co-Simulation Cycle” on page 196).
Specman Elite is invoked after all possible delta cycles in the HDL
simulator have been processed. Thus, all signal values in the simu-
lation will have been simulated as far as possible and will have
reached their final stable state. Similarly, all of Specman Elite’s
delta cycles are executed before returning to the HDL simulator,
ensuring stable and final output values. Nevertheless, if it is neces-
sary to shift the timing of the output signals from the sampling of
the input signals, there are two mechanisms that can be used: output
delays and separate events.

Using the verilog variable or vhdl driver statement, you can specify
a delay to be introduced in any output signal. This delay will be
physically implemented in the stub file and modeled using HDL
constructs. For example, Sample 5-70 shows how to introduce a
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P i

Sample 5-70.

Specifying
output delay in
e.

HDL statements
may not be sub-
Jject to aspect-ori-
ented extensions.

two timescale unit delay in a VHDL output signal. The Specman
Elite documentation does not specify how the output delay is
implemented in Verilog. Whereas the vhdl driver statement can
specify inertial or transport delay model, there is no such option in
the verilog variable statement. It is not specified whether the delay
is implemented using continuous assignments, blocking assign-
ments or nonblocking assignments. If the Verilog delay model used
is important {(and it is very important on asynchronous signals),
refer to the generated code in the specman.v file. If a different Ver-
ilog delay model should be used, you may have to generate your
own interface code and internal output variable using the verifog
code statement,

unit phy_utepial {
RxClk : string:;
RxData: string;
event rx_clk is rise(’(RxClk}*) €sim;

vhdl driver ¢ (RxData)’ using
delay=2, mode=INERTIAL;
Yi

If the functional correctness of a bus-functional model depends on
the presence or the value of output delays, it would be nice if you
could guarantee that they were specified at all times. The only way
to do so would be to include the verilog variable or vhdl driver
statement in the bus-functional model code. The problem with ver-
ilog variable stalements is that, once in there, they cannot be modi-
fied without modifying the code itself. To modify a delay specified
using a verilog variable statement requires that a different source
file be loaded. -

On the other hand, vhd! driver statements are unit members. They
can thus be located in a when extension. Different when extensions
can be used to specify different delays for different instances of the
bus-functional model. As a rule, verilog variable and vhdl driver
statemnents should be added only to the user of a bus-functional
model, never its author. This addition enables the user to adapt the
timing of the bus-functional model to the particular requirement of
the design under verification. As an author, your bus-functional
models should never depend on the presence of output delays.
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Have separate
sampling and driv-
ing events.

Sample 5-71.

Using sepa-
rate sample
and drive
events

If the functional correctness of a bus-functional model depends on
the timing of the outputs being separated from the timing of the
inputs, you can use two separate events. One event is used to syn-
chronize the sampling of the inputs; the other event is used to syn-
chronize the driving of the outputs. Which event is used to
synchronize the TCM depends on which activity must be done first.,
If the first operation is to sample signal, then use the input synchro-
nization event. Otherwise, use the output synchronization event.

Sample 5-71 shows the bus-functional model from Sample 5-69
using separate sample and drive events. This techniques makes it
very easy to sample inputs on one edge and drive the outputs on the
other. This technique can be coupled with verilog or vhdl state-
ments to introduce additional delays on individual cutputs after the
output synchronization event. Using this method, the output syn-
chronization can be modified using aspect-oriented extensions
without modifying the original code by redefining the drive event
using is only. Sample 5-72 shows an example of modifying the out-
put synchronization event of the bus-functional model in Sample 5-
71. Used in concert with when extensions, the output synchroniza-
tion event can be modified on a per-instance basis,

unit phy_utopial {
RxClk: string:
event sample is rise{’(RxClk)’) @aim;
event drive is fall{*’ (RxClk)’) @sim;

tx({cell: atm_cell) @sample is {
var bvtes: list of byte:;

for each in bytes {
sync true(’/(BxEnb)‘’ != 1'b0) @sample;
wait cycle @drive;
"{RxEmpty)’ = 1'bi;
‘{RxData)’ = 1it;
wailt cycle @Gsample;

(RxEmpty) " = 1'B0;

bi
Yi
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Sample 5-72.

Modifying the
drive event

extend phy_utopial {
event drive is only {rise(’(RxClk)‘);
delay(2)} @sim;

Asynchronous Bus-Functional Models in e

TCM synchroniza-
tion event is only a
default.

Use @sim as tem-
poral sampling
events.

Sample 5-73,

Asynchronous
TCMine

Use sys.any for the
TCM event.

If a TCM requires a synchronization event in its declaration, and
that synchronization event is used in all of wait or sync actions in
the TCM, how can you model asynchronous behavior using e? The
TCM synchronization event is provided only as a convenience
when describing an synchronous bus-functional model. It becomes
the default sampling event for temporal expressions in the wait and
sync statements instead of the sys.any event. But the TCM synchro-
nization event is only a default. As shown in Sample 5-71, you can
specifly a different temporal sampling event explicitly.

When detecting edges on asynchronous signals, simply use the
@sim pre-defined temporal sampling event, as shown in Sample 5-
73, If you define an explicit event for the relevant asynchronous
edges, be careful to specify that event as the sampling event when
waiting for that edge, as in Sample 5-74. If you do not, as in Sample
5-75, the sampling event will default back to the TCM synchroniza-
tion event.

unit cpu_if {

write({wadd: uint (bits: 24),
wdat: uint (bits: 16}} @sys.any is {
‘fladdr) " = wadd;
‘{data)’ wdat;
f(wr)’ = 1'bl;
walt rise(’{xrdy)’) @sim;
wr) = 0;
‘(data)’ = 16"'hZZZZ;
wait fall(’(rdy)’') Gaim;

Yi

Using explicit temporal sampling events for waif and sync actions
solves the synchronization problem once inside the TCM. But what
about the initial implicit sync action at the beginning of the TCM?
When invoking a TCM, if its synchronization event has not been
emitted in the corrent simulation cycle, it will wait until that event
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Sample 5-74.

unit cpu_if {

Bus-Functional Models

the lowest frequency signal possible as the temporal sampling

Waiting for ca . . event. In Sample 5-74, the very edge we were waiting for is used as
asynchronous event is_rdy is rise(’(rdy)’) @sim; the temporal sampling event, which will occur exactly once. It’s
event event is_ovr 1s fall(’(rdy)’) @sim; hard to find a lower frequency than that

write(wadd: uint (bits: 24), 4 .

wdat: uint (bits: 16)) @sys.any is {

.- Configurable Bus-Functional Models
wait ayele @is_rdy:
it le @i Protacolscanhave A protocol specification may contain configuration options. For

. 1L cycle Kis_ovry configurable ele-  example, the assertion level for a particular control signal may be

ments. configurable to either high or low. Each option has a small impact

. on the operation of the interface. Taken individually, you could cre-

Sample 5.75. unit cpu_if { ate a different task or procedure for each configuration. The prob-

Improperly cvent is rdyv is rige (* (xdy) . lem would be relegated to the testcase in deciding which flavor of

waiting for event isiovi{: is fall(: (i dﬁ; ,; gs iz' the ope:ratio.n to invoke. You would also have to maintain several
:?c’friftlhl‘orlous write (wadd: uint (bits: 24), nearly identical models.

wdat: uint (bits: 16)) @sys.any is { ) . )

- of Simple config- Taken together, the number of possible configurations explodes fac-
walt @is_rdy; gﬁgﬁ:igg“ﬁx toriaily.1? It would be impractical to provide a different procedure
wailt @is ovr: when groupe%_ or task for each possible configuration. It is much easier to include

}i - configurability in the bus-functional model. An RS-232 interface,
shown in Figure 5-23, is the perfect example of a highly config-
. . . e . . urable, vet simple interface. Not only is the polarity of the parity bit
if;ggg&;gg&ﬁﬁge;z iﬂsoli:Zilé’;bslelﬁlfrisnﬁrzlzgzin::znlius-func— conﬁgu)rfable, ;)ut also its presence,yas wellpas thg numbel; oft}cylata
4 ) bits transmitted. And to top it all, because the interface is asynchro-
To prevent a TCM from waiting at all, use the sys.any event as the nous, the duration of each pulse is also configurable. Assuming
TCM synchronization event, as shown’in Sampl g 575 Because the eight possible baud rates, five possible parities, seven or eight data
sys.any event is always emitted in all simulation cycles, the TCM b?;’) andfgne o t;vo Stgf bits, thetr:rsarc 160 possible combinations
will never wait. This technique goes against a guideline (that is of taese four contigtirable parameters.
almost guaranteed to exist in your e coding guidelines) that says
never to use the sys.any event. This guideline is designed to prevent F_—_ST Duration
inefficient temporal i h 5 lgure S5-22. {baud rate)
poral sampling, such as the one found in Sample 5- Specification
75. By not specifying an explicit temporal sampling event, the tem- for the RS-232 1 ] 1]
poral expression will default to sys.any, which is the highest fre- interface le_sle NP |
quency event in e. Sampling a temporal expression more often than Start bit Data bits (7 or 8) " Parity Stop bit(s)
required quickly decreases simulation performance. But guidelines bit  (Lor2)
are only guidelines. If you know and understand what you are {optional)
doing, they can be ignored safely.
In an asynchronous bus-functional model, always specify an
exolici . . .
xphc.lt tel.nPoral sampling event for all wait and.sy nc actions. The 10.Exponential growth follows a K" curve. Factorial growth follows a n!
same inefficient model can be rendered very efficient by specifying ‘cuge whcrcgn' 1x2%3%4%.. X (:{-2) % ( n-l)gx n )
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Write a config-
urable bus-func-
tional model.

Instead of writing 160 flavors of the same transaction, it is much

easier to model the configurability itself, as shown in Sample 5-76.°

Configuration parameters tend to remain static during an entire
simulation (uniess the corresponding design can be re-configured
on-the-fly, and this on-the-fly reconfiguration is the objective of the
test). They must also be consistent across different bus-functional
procedures within the same bus-functional model. Rather than pass-
ing “constant” information through the interface of each bus-func-
tional procedure, it is better located in the bus-functional model
encapsulating structure (see “Encapsulating Bus-Functional Mod-
els” on page 137) alongside the bus-functional procedures where it
can be accessed directly.

For Verilog, configuration parameters would be implemented as
variables in the encapsulating module. For e, they would be imple-
mented as fields in the encapsulating uniz, For OpenVera, they
would be implemented as properties in the encapsulating class, The
only exception is VHDL: Because there can be only one instance of
a package in a simulation, a shared variable would not support dif-
ferent configurations for different instances of the interface. The
configuration parameters must be passed through the interface of
each procedure using a record type argument. What important

safety measure is missing from Sample 5-7671

RESPONSE MONITORS

Response transac-
tions can be encap-
sulated.

Earlier in this chapter, we encapsulated input transactions to
abstract the stimulus generation from individual signals and wave-
forms to generating sequences of operations. A similar abstraction
can be used for verifying the response. The repetitiveness of output
signals within a transaction can be taken care of and verified inside
the bus-functional model. Then the testbench only needs to worry
about the correctness of the data carried by the transaction. Sample
5-77 is an example of a bus-functional procedure for an RS-232
monitor.

11. The time consuming method should be protected using a semaphore to
prevent concurrent access to the interface signals. See “From Bus-Func-
tional Procedures to Bus-Functional Model” on page 272,
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Sample 5-76.

Model for a
configurable

bus-functional

model

Verifying the data
in the response
monitor is too
restrictive.

unit rs_232 isg {

baud_rate: uint [1200, 2400, ..., 115960];
parity [NONE, ©DD, EVEN, MARK, SPACE];
n_bits : uint [7..8]:

n_stops : uint [1..27:

send{data: byvte) @sys.any is {

var duration: uint = 1000000 / me.baud_rate;
lexy ' = 17b0;
walt delay(duration):
for i from 0 tc me.n bits-1 {
‘{tx)’ = datalil;
walt delay{duration};

Y

if (me.parity != NONE) {
1f (n_bits == 7) datal7] = 1'b0;
case (me.parity) is {
OoDD f{tx}’ = ~tdata;
EVEN : ‘({tx)’ = A*data;
MARK : ‘(tx)" = 1'bl;
SPACE: ‘({tx)’ = 1'b0;

}i
wait delay(duration);

+;
ex)t = 17bl; -
wait [me.n_stops] * delay(duration);

b

Yi
The response verification operation, as encapsulated in Salpple 5-
77, has a very limited application. It can be used only to }rerlfy that
the output value matches a pre-defined expected value, .w1th no par-
ity error. Can you imagine other possible uses? What if the outpgt
value can be any value within a predetermined set or range? What if
the output value is to be ignored until a specific sequence of output
values is seen? What if the output value, once verified, .needs to b.e
fed back to the stimulus generation? What if the parity value is
expected to be incorrect? What if data value's were to be 1gn0‘red if
the parity bit is invalid? The usage possibilities are endlf.iSS. It is not
possible, a priori, to determine all of them nor to provide a single
interface that satisfies all of their needs.

Writing Testbenches: Functional Verification of HDL Models

291



Stimulus and Response

Sample 5-77.

RS-232 serial
receive bus-
functional
checker

Separate monitor-
ing from value
verification.

Consider all possi-
ble failure modes.

class rs_232 {

task recv(bit [7:4] expect) {

integer period = 1000000 / this.baud_rate;
bit [7:0] data;
integer i = 0;

€@ (negedge thisg.sigs.rx async); // Wait 4 start
delay{pericd / 2); // Sample mid-pulse
datal[7] = 1'b0; // Handle 7 data bits
for (i = this.n_bits-1; i »>= 0; i--) {

delay (period) ;

datalil = rx; // 7-8 data bits

}

if (data != expect)

if (this.parity != this.NONE) then // Parity?
delay (period) ;
this.sigs.rx == calc_parity(...) async:

H

delay (period) ; // Stop bit

rx == "1’ async;

}

The most flexible implementation for an response transaction bus-
functional procedure is simply to return to the caller whatever out-
put value was just received. It will be up to a “higher authority” to
determine if this valoe is correct or not, The RS-232 receiver was
modified in Sample 5-78 to return the byte received without verify-
ing its correctness. The correctness of the parity is also returned,
this time using a parameter passed by reference (equivalent to an
out parameter in VHDL or Verilog).

The bus-functional procedure shown in Sample 5-78 has some
potential problems and limitations. What if the output signal being
monitored is dead and the start bit is never received? This proce-
dure will wait forever. It may be a good idea to provide a maximum
delay to wait for the start bit via an additional argument, as shown
in Sample 5-79, or to compute a sensible maximum delay based on
the baud rate. Notice how a default argument value is used in the
procedure definition to avoid forcing the user to specify a value
when it is not relevant, as shown in Sample 5-79, or to avoid modi-
fying existing code that was written before the additional argument
was added.
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————— function bit [7:0] recviwvar bit ok) {

Sample 5-78. integer period = 1000000 / this.baud_rate;
RS-232 serial integer i = 0;

receive bus-
functional pro-
cedure with-
out verifying
correctness of
byte received

Sample 5-79.

Providing an
optional time-
out for the RS-
232 serial
receive trans-
action

Do not arbitrarily
constrain the trans-
action.

@ (negedge this.sigs.rx async); // Wait 4 start
delay (period / 2); // Sample mid-pulse

recv[7] = 1°'b0; // Handle 7 data bits
for {i = this.n_bits-1; 1 »= 0; i--) {
delay {pericd);
recv[i] = rx; // 7-8 data bits
H
ok = 1;
if (this.parity != this.NONE) then // Parity?
delay (period) ;
ok = (this.sigs.rx === calc_parity(...)};

}
delay (perieod) ;
rx == ‘1' asyng;

// Stop bit

recv(var bit ok,
integer timeout = 0) {

function bit[7:0]

if {timecut = 0) {

fork
{
delay (timeocut) ;
ok = 0;
recv = 8'hXX;
return;
}
join none
}
@ (negedge this.sigs.rx async):
terminate;

end recv;
The width of pulses is not verified in the implementation of the RS-
232 receive operation in Sample 5-78. Should it? If you assume that
the procedure is used in a controlled 100% digital environment,
then verifying the pulse width might make sense. This procedure
also could be used in system-level verification, where the serial sig-
nal was digitized from a noisy analog transmission line as illus-
trated in Figure 5-24. In that environment, the shape of the pulse,
although unambiguously carrying valid data, most likely does not
meet the rigid requirements of a clean waveform for a specific baud
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Figure 5-24.

Modification
to the serial
signal in a real
system

Generation and
moenitoring per-
tains to the ability
to initiate a trans-
action,

Monitors must
always be moni-
toring.

rate. Just as in real life, where modems fail to communicate prop-
erly if their baud rates are not compatible, an improper waveform
shape is detected as invalid data being transmitted.

RS232 ) RS232
Tx Rx

We have already seen that input transactions sometimes have to
monitor scme output signals from the design under verification.
The same is true for a response monitor. Sometimes, the monitor
has to provide data back as an answer to an “output” transaction.
This reporting blurs the line between stimulus and response. [sn’t a
stimulus bus-functional procedure that verifies the control or feed-
back signals from the design also doing response checking? Isn’t a
monitor procedure that replies with control flow signals back to the
design also doing stimulus generation? The terms generator and
monitor become meaningless if they are attached to the direction of
the signals being generated or monitored. They regain their mean-
ing if you attach them to the initiation of transactions. If a proce-
dure Initiates the transaction under full control of the testbench, it is
a stimulus generator. If the procedure sits there and waits for a
transaction fo be initiated by the design, then it is a response moni-
for,

Bus-functional model procedures must be invoked by the testbench.
Invoking a bus-functional procedure either initiates a stimulus
transaction or initiates the expectation of a response transaction.
What if the design happens to initiate a response transaction but the
testbench had not called the appropriate bus-functional model
response procedure? At best, the design will detect that the test-
bench is not ready to receive data because of some control flow sig-
nals were left at an appropriate level at the completion of the
previous response transactions. But this would result in back-pres-
sure building up inside the design and would not verify the design
under maximum throughput. Typically however, output data would
“spill” and a gap would be created in the output data stream. At
worst, the design will fail to operate correctly because the output
transaction protocol will be violated due to missing feedback sig-
nals. What if the testbench invokes the response procedure just a
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few cycles too late, after the design has already initiated a response
transaction? A transaction protocol violation is likely to be
reported. To avoid the false errors introduced by the misalignment
of the response transaction in the testbench and the design, response
monitors should always be active and monitoring the design output
interface.

Autonomous Monitors

Decouple timing
of transaction and
timing of response
checking.

Fignre 5-25.

Structure of an
autonomous
monitor

Add a concurrent
thread in the bus-
functional model.

Since the testbench is not responsible for the initiation of the
response transaction, why give it the responsibility for the initiation
of the response menitoring procedure? Testbenches are not usually
interested in the timing of the output transaction; testbenches are
interested only in verifying that the output data is correct. There-
fore, we can decouple the monitoring of the physical interface sig-
nals from the retrieval of the output data. As illustrated in Figure 5-
25, an independent thread continuously monitors the output trans-
actions. Output data is extracted from each transaction and put into
a FIFO. The testbench retrieves the next output data that was
received from the front of the FIFO.

FIFQ

iff Data
<= . . —» Testbench
Monitor Retrieval estbenc

h 4

The bus-functional response procedure is invoked within a concur-
rent thread running inside the bus-functional model, as shown in
Sample 5-8(). Because module, unit and class constructs in Verilog,
e and OpenVera can contain execution threads (always block, time-
consuming method starfed in the run() method and method called
in a forkf{join none statement in the constructor, respectively), it is
very easy to implement within the bus-functional model encapsula-
tion. The only problem is VHDL: Procedures are encapsulated
using packages, but packages cannot contain processes. Processes
can be encapsulated in entities, bul entifies cannot contain exter-

nally-callable procedureslz. There is.a (convoluted) way out that is
described in “VHDL Test Harness” on page 325,

12. AAAAAAAAA Aaaaaaaaaaaaaaarrrrmmrrrgggggeggghhhhhhhhbh!
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Sample 5-80.

Autonomous
RS-232
TESpOnse mon-
itor

Qutput data is
buffered in a list.

Data collection
could be optional,

unit rs_232 {
ldata_bfr: list of byte;
rx(ok: *bool}: byte @ays.any is ...;

rx_daemon(} Gsys.any is {
var data: byte;
var ok : bool;

while TRUE {
data = me.rx(ok):
if (ok) {
me.data_bfr.push(data};
b
}:
b:

run() is also {
astart me.rx daemon();
ti
Y

As output data is extracted from the response transactions, it is
added to a FIFO to be retrieved later by the testbench. For simple
interfaces, such as RS-232, the buffered data is a simple byte. For
more complex interfaces, such as SONET/SDH, the buffered data
would be an entire frame. It is not possible to predict how many
such data items will need to be buffered before we get the test-
bench’s attention. Therefore, it must be accumulated in a list (see
“Lists” on page 157) that will grow as data is collected from the
output and shrink as data is retrieved by the testbench.

What if, for a particular testcase, a testbench does not need to
examine the output data from an interface? Data would accumulate
in the FIFO, consuming an ever increasing amount of memory.
Hopefully, the simulation would terminate before running out of
memory—but that is not likely. An alternative is not to activate the
monitoring process to avoid data from being accumulated in the
first place. But what if the testcase in question causes a protocol
violation on the output interface that we thought was not relevant?
Because there is no active monitor on that interface, the error will
go unnoticed. The better alternative is to have the monitor extract
data from output transaction, verifying adherence to the protocol
and providing necessary feedback signals but turn off data accumu-
lation. As shown in Sample 5-81, protocol correctness will be mon-
itored without data being accumulated.
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Sample 5-81.

Optional data
collection

Can provide
blocking or non-
blocking model,

Decoupling
implies that trans-
action timing is
not relevant,

class phy_utcpial {
local bit is_sink = 0;
local integer cell_bfr;
local function atm cell rx();

task rx_daemon(} {
while (1) {
atm_cell cell = this.rx{):
if (cell != null && !this.is_sink) {
mailbox_put{this.cell_bfr, cell);
}

}

task new(bit is_sink = 0) {
this.is_sink = is_sink;
this.cell_bfr = alloc(MAILBOX, 0, 1);

H

To remove the testbench from knowing the detailed implementation
of the data buffering mechanism, provide a procedure to retrieve
the next data element that was received. This raises one question:
What do we do when there is no data for the testbench? One solu-
tion is to wait for data to become available suddenly. But what if the
testbench needs to turn its attention elsewhere while the retrieval
procedure is stuck waiting for data? A better solution is to give the
choice to the testbench whether to wait if there is no output data. If
the testbench specifies a nonblocking retrieval mode and there is no
available data, a suitable indication that no data was available must
be returned. In Sample 5-82, a nul reference is returned.

Decoupling the monitoring of the physical signals from the verifi-
cation of the data output requires that the timing of the data not be
relevant to determine functional correctness. As long as the data
comes out, the design works. This decoupling is actually one of the
great benefits of using behavioral testbenches: As the design is
modified and pipeline stages are added or removed, the testbench
need not be modified. But what if it is functionally important that
data comes out after a specific (or range of) number of clock
cycles? If it is important, it must be stated in the design specifica-
tion document. If it is in the design specification document, it must
be verified. If it must be verified, the testbench must be able to ver-
ify the timing of the output data.
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unit rs_232 {

Sample 5-82. event new_cell;

Nonblocking .
data retrieval rx_deamon() @sys.any is {
procedure L
while TRUE {
cell = me.rx{ok);
if (ok and not is_sink) {
me.cell_bfr.push{cell);
emit me.new cell;
Y
};
}:

get_cell (blocking: bool): atm_cell @sys.any is
{
while (blocking and cell_bfr.size(} == 0) {
wait cycle @new cell;
}i:
if (cell bfr.size() == 0) {
return null;
TP
return cell_bfr.popl();

Yi

Transaction tim- Verifying timing does not mean that it must be verified where and
ing canbe verified  when the transaction started (or completed). Timing also can be
:;r‘f;zg“me' verified by comparing timestamps. To satisfy the need of both types
’ of testbenches, one where transaction timing is relevant, the other
where it is not, timing information should be added to the extracted
data. The testbench is then free to compare or ignore the timing
information. There is one problem though: Where is the timestamp
information stored? The output data structure is unlikely to have
additional fields to store that information. Modifying the original
data structure to add the necessary field may be a bad idea. If the
original data structure potentially is reusable in other project or test-
benches, you are adding project- or testbench-specific information
to a common object. If everyone did the same, it quickly would
grow into an unmaintainable mess that could not be trusted to be
functionally correct. Instead, extend the original object to add your
required information, leaving the original data structure intact.
Sample 5-83 shows an extension and timestamping example.
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class stamped_atm_cell extends atm _cell {

ngple 5—8'.?- . bit [63:0] started;
Timestamping bit [63:0] completed;
output data }

class phy_utopial {

local function stamped_atm_cell rx{) {
@1 this.sigs.$TxEnb == void;
if (this.sigs.s$TxEnb == 1'bl) {
@ (negedge this.sigs.s5TxEnb);
}
rx = new;
rx.started = {get_time(HI), get_time(LO)};

rx.completed = {get_time(HI}, get_time(LC)};

Slave Generators

Responsemonitors How do you verify an interface used by the design to fetch data?

may need to reply  Typical examples include the instruction fetch interface on a pro-

with “input” data.  cecsor or a EPROM interface on a design. The transactions are initi-
ated by the design, not the testbench. Therefore, it falls under the
category of response monitor. But the transactions do not produce
any output data, Instead, they require and consume input data. It is
the responsibility of the testbench to supply the data to complete the
transaction in a timely manner. Of course, in those cases, the cor-
rectness of the data is implied. It will have to be verified elsewhere
when it (or its descendent) shows up at another interface.

Slave generators Because of the time-sensitive nature of the transaction, it is not pos-

must “callback” sible to decouple the monitoring of the output interface and the gen-

the testbench. eration of the reply data. The testbench must be ready to supply
data at all times. The difficulty is how to get the testbench’s atten-
tion when required. In software engineering terms, this is called a
callback. VHDL and Verilog do not have any built-in callback
mechanism. In e, the bus-functional model would provide a call-
back method designed to be extended as required by the testbench.
In OpenVera, callback methods are implemented using virfual
methods.
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Emulate callbacks
by calling a proce-
dure in HDLs.

Sample 5-84.

Bus-func-
tional model
with standby
procedure

Provide empty
callback method in
e.

In VHDL and Verilog, a callback mechanism can be emulated by
having the testbench constantly call a “standby” procedure. The
caliback occurs when the procedure returns. The testbench can exe-
cute testcase-specific code to generate the input data that is imme-
diately supplied by calling the standby procedure again. Sample 5-
84 shows a bus-functional model monitoring the instruction fetch
interface of a CPU. Rather than pre-generating the code before the
simulation and statically loading it into a memory model, this bus-
functional model lets the testbench dynamically generate instruc-
tions on-the-fly. Notice the “fetched” procedure. It is the standby
procedure used by the testbench to provide the instruction opcode
fetched from the specified address. Sample 5-85 shows how a test-
bench could use this standby procedure to implement a random
instruction generator stream.

module code_mem(addr, as, data, rdy);
event fetch, ready;

always
begin

@ (negedge as);
fetched.address = addr;
-» fetch;

@ (ready);

data = fetched.opcode;
rdy = 1'b0;

end

task fetched:
output [31:0] addreas;
input [31:0] opcode;
begin
== ready;
@ (fetch);
end
endtask
endmodule

With aspect-oriented programming in e, you can extend a method
within the bus-functional model to include testbench-specific code.
The only detail is that the method must exist to begin with. A test-
bench can then extend this callback method at its leisure. The initial
implementation of a callback method should provide an innocuous
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Sample 5-85.

Using the
standby proce-
dure

Use virtual call-
back method in
QOpenVera,

module testbenchi}
code_mem pmem(...):

always
begin
reg [31:0] addr, opcode;
pmem. fetched (addr, opcode);
opcode = generate opcode(addr);
end

endmnodule

input value so that it is not necessary for all testbenches to extend
the callback method if it is not relevant. The callback method is
called at the appropriate point in the bus-functional model, execut-
ing either the default or an extended implementation. In e, callback
methods should not use arguments to pass information back and
forth between the bus-functional model and the testbench.

Instead, “public” fields should be used. Because a method must be
extended by reproducing the entire method declaration exactly, any
modification in the interface to the callback method (such as add-
ing, modifying or removing an argument) will require that all test-
benches extending that method be modified to match. If all
arguments are passed via globally-visible fields, there is no argu-
ment to modify creating a more stable interface.

Using fields over arguments has another advantage: They can be
constrained. More details on constraint strategy will be discussed in
“Random Stimulus” on page 354. Sample 5-86 shows a similar
instruction féich bus-functional model as in Sample 5-84. The call-
back method is extended in a testbench as shown in Sample 5-87.

In OpenVera, callback methods are implemented using virtual
methods. The default implementation of a callback method should
be to return an innocuous value to eliminate the requirement that all
testbenches overload the callback method to render a bus-func-
tional model functionally comrect. Testbench-specific code can
replace the default implementation by providing an overloaded def-
inition in a derived class. Information can be passed between the
bus-functional model and the callback method through arguments
or through public or protected properties. Sample 5-88 shows a
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Sample 5-86.

Bus-func-
tional model
callback
method in ¢

Sample 5-87.

Extending the
callback
method

Callback methods
create a reusable
slave generator.

unit code_mem is {

laddress: uint (bits: 32);
lopecode : uint (bits: 32);:

moniter_deemon{) @sys.any igs {

walt fall({‘{(adstb)’) @sim;
me.address = ‘{addr)’:

me, fetch();

data = me.opcode;

‘{rdy)’ = 1'b0;

}

fetched{) is {
me.opcode = NOP.opcode();
b
}i

import code_memn;
extend code_mem {
lingtr: instruction;
fetched () is alsc {
gen me.instr;
me.opcode = me.instr.opcode ()
Y
Yi

similar instruction fetch bus-functional model as in Sample 5-84.
The callback method is extended in a testbench as shown in Sample
5-89.

Why bother with this callback method extensions and standby pro-
cedure calls? Why not simply go in the bus-functional model, add
the code we need directly in there and be done with it? That would
be the simple way out, but one that will create maintenance chal-
lenges later on. This approach makes one big assumption: that you
have access to the scuice code to being with. If you wrote the bus-
functional model yourself, you do. But it also could be a very large
bus-functional model purchased from a third party who will only
supply compiled or encrypted code to protect their interests. What
if different testbenches need different extensions to the bus-func-
tional model? Are you going to create a different copy for each?
What about reusing that bus-functional model in the next revision
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Sample 5-88. 7

Bus-func-
tional model
callback
method in
OpenVera

Sample 5-89.

Overloading
the callback
method

Fime may be
allowed to
advance in call-
back methods.

class code_mem {

task monitor_daemon() {
bit [31:0] opcode;

@ (negedge this.sigs.$as async);
opcode = this.fetched(this.siga.addr);
this.sigs.$data = opeode async;
this.sigs.srdy = 1'k0 async;

}

virtual function
bit [31:0] fetched(bit [31:0] addr) {
fetched = NOP.cpcodel();

#include “code_mem,vrh” ]
class my_code_mem extends code_mem {
instruction instr;
virtual function
bit [31:0] fetched(bit [31:0] addr) {
vold = this.instruction.randomize() ;
fetched = this.instr.opcode();

of the project or in a different project altogether? By specializing a
bus-functional model to the specific needs of your testbench(es),
you have made reusing it and incorporating upgrades and bug fixes
more difficult. You saved a little initially, but lost a lot more in the
long run

There was one question I conveniently ignored in the callback
method discussion. Must they all execute in zero-time or is time
allowed to advance in a callback method? The answer is: It
depends. If the transaction protocol includes handshaking and flow-
control indicators, it is possible to have time advance in the execu-
tion of a callback method. This technique would introduce delays in
the response back to the design. Other transaction protocols may
suffer a total breakdown if any delay is introduced, in which case
the callback method must execute in zero-time. Even in such cases,
it may be possible to allow some time to be advanced within a call-
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back method as the response is often not required until the begin-
ning of the next clock cycle.

e has a built-in mechanism for enforcing time restrictions: Use a
TCM for callback methods that are allowed to advance time and
use a regular method for callback methods that must execute in
zero-time, With HDLs and OpenVera, you have to rely on the test-
bench to respond appropriately. To detect misuse of zero-delay or
time-limited callback methods, provide a timer to detect callback
method invocations that do not return within the appropriate time
window, as shown in Sample 5-90.

class code_mem {

Sz_imple 5-90. .

g‘mmtg c:llulra_ task monitor_deamon{) {
on ol call- pit [31:0] de;

back methods * cpeode

@ {negedge this.sigs.$as);
fork
opcode = this.fetched{this.sigs.addr);
{
delay(...);
printf{“Too much time in cllbck\n”);
exit(-1);
}
join any
terminate;
this.sigs.$data = opcode;

Multiple Possible Transactions

The next transac- ~ You may be in a sifuation where more than one type of transaction
tiononanoutput  can happen on an output interface. Each would be valid and you
intecface may not  cannot predict which specific operation will come next. An exam-
be predictable. . .
ple would be a processor that executes instructions ouf of order.
You cannot predict (without detailed knowledge of the processor
architecture) whether a read or a write cycle will appear next on the
data memory interface. The functional validity is determined by the
proper access sequence to related data locations.
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Response Monitors

load A, RO

Sample 5-91. load B, Rl
Processortest 533 RO, RL, R2
program sto R2, X
load C, R3
add RO, R3, R4
sto R4, ¥
Verify the For example, consider the testcase composed of the instructions in
sequence of Sample 5-91. It has many possible execution orders. From the per-

related operations.  gnective of the data memory, the execution is valid if the conditions

listed below are true.

Location A is read before location X and Y are written.
Location B is read before location X is written.
Location C is read before location Y is written.
Location X must be written with the value A+B.

;oop wm

Location Y must be written with the value A+C.

These are the sufficient and necessary conditions for a proper exe-
cution of the test program. Verifying for a particular order of the
individual cycles over-constrains the testcase, unless the specifica-
tion demands in-order instruction execution.

Use a transaction ~ How do you write a response monitor when you do not know what

descriptor. kind of transaction comes next? You must write a bus-functional
procedure that identifies the next transaction after it has started. It
verifies the preamble to all transactions on the cutput interface until
it becomes unique to a specific transaction. It then builds a transac-
tion descriptor containing any information collected so far to iden-
tify, to the testbench via the callback procedure, which transaction
is currently underway. It is then up to the testbench to supply the
necessary-(and correct) information to complete the verification of
the transaction.

Sample 5-92 shows a response monitor bus-functional procedure
that identifies whether the next transaction from the design is a read
or a write cycle. Since the address already has been sampled by the
time the decision of the type of cycle was made, the address is
returned along with the current cycle type. These two values make
up the transaction descriptor. Small transaction descriptors can be
implemented using discrete values. More complex transaction
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descriptors should be implemented using records (see “Records” o TRANSACTION-LEVEL INTERFACE

page 146). Sample 5-93 shows how this transaction descriptor is
used by the testbench to determine the next course of action,

Testbenchesare - Ag illustrated in Figure 5-26, the purpose of bus-functional models
removed from the  is to remove the testbench from the repetitive physical-level details.

Sample 5.92. module ram_if(addr, cs, ale, rw, data, rdy); physical level. The bus—fugcﬁonal model lets the testbench concentrate on t1.1e data

Monitoring aiva to be supplied, on the data that was produced and how it is sup-

many possible begiis posed to have been transformed. Once your have a reliable set of

output transac- vhile (cs == 1'bl) @ (neged 1 bus-functional models, it makes writing testbenches faster and eas-

tons mem_cycle.address - addf‘ ge alel; ier. In this section, I will describe how to design a transaction-layer
mem_cycle.is_write = (rw == 1'bl); interface. The next chapter will describe how to structure a test-
mem cycle.data = data; bench on top of a transaction layer.

-» do_cycle;
@ (cycle_done):
end

Figure 5-26. Testcases
task mem_cycle; Transaction i
output [31:0] address; layer testbench r Transaction Layer
output is_write; Bus Design Bus
b incut [31:0] data; Funct. under » Funct.
egin .
@ (do_cycle); Model Verif. Model
-»¢ycle_done;
end
endtask The transaction Throughout this chapter, the procedural interface of the bus-func-
endmodule interface mustbe  tjonal models evolved from the particular transaction being dis-
designed. cussed. It was optimized according to the particular point [ was
Sample 5-93, init:ial tryipg to make .while presenting advantages' and disadvantag?s of
Handling begin: test procedure various alternatives. Each procedure was written and evolved inde-
many possible i :g % gi 8% gddr; pendently of each other. The purpose of this chapter was the gener-
output opera- reg ; iata; . ation and monitoring of physical-level signals, not the design of a
tions S-write; transaction interface. Using this process to write a complete bus-
mem_cycle(addr, is_write, data); functional model will likely result in an awkward and clumsy trans-
case (is_write) ‘ action interface dictated by the physical-level details, not the
2 S:E: = read_cycle (addr); requirements of the testbenches that must use it. The transaction
o dcasee_cyﬂe (addr, data); f interface of a bus-functional model must be designed and planned,
. just like the testcases or the design.
end Declare. When designing a bus-functional model, write the transaction inter-
face first. This is akin to writing the A file in C. Code the signal,
variable, procedure, task, function and method declarations that
make up the entire transaction interface of your bus-functional
model. Leave the body or the implementation of each procedure
empty. This style will let you focus on the transaction interface
across all of the transactions. A good starting point is one procedure
306
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Document,

Implement,

per transaction. But as you start thinking about the needs of the
testcases, their number may grow or shrink. This is the stage where
you address questions like “Should this method be blocking?” and
“How much work can I do without the testbench’s attention?” You
have to strike a balance between abstraction and controllability.
You have to consider the requirements of each testcase, the self-
checking mechanism and functional coverage measurement.

Next, write the user documentation for the bus-functional model.
Yes, documentation. It is the only way to ensure that the documen-
tation will reflect the content of the bus-functional model accu-
rately and that it will exist at all. It also presents an opportunity to
think about the purpose of each element of the transaction interface.
The documentation will have to describe the functionality and
interaction of each element, often highlighting inconsistencies or
difficulties that were not considered when coding the interface.
Review and iterate over the declaration and the documentation until
your have specified a bus-functional model that will meet all of
your requirements,

With the declaration and documentation of each procedure com-
pleted, the implementation of the bus-functional model becomes a
simple coding exercise. During the implementation, you will dis-
cover misunderstanding in the specification of the physical inter-
face specification. You will encounter functionality that cannot be
implemented as intended. You will find inconsistencies in the bus-
functional model specification. Update the transaction interface and
the documentation as required.

Variable-Length Transactions

Transactions can
transfer a variable
number of bytes.

Most of the transactions used so far were simple fixed-size transac-
tions. The amount of data transmitted to or from the design was
identical in each occurrence of the transactions. For example, an
RS-232 interface always transmits a single byte. Most physical
interfaces nowadays deal with variable-length data. For example,
all ethernet interfaces deal with MAC frames between 64 and 1,518
bytes long. In a PCI interface, the maximum number of bytes that
can be transferred in a read or write cycle is not even specified. A
variable-length protocol can be built on top of a fixed-length physi-
cal interface. For example, a PPP transaction over an RS-232 link
will transmit and receive variable-length packets, one byte at a
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Use a list or an
array.

In Verilog, use a
buffer with length
indication.

time. How do you design a transaction interface that can handle
those differences? The easiest solution is to provide enough mem-

- ory for the largest amount of data and a “length” specification indi-

cating how many data elements are actually valid. But always
specifying the maximum number of data is inefficient and wastes
memory.

In OpenVera or e, the response is simple: Use a list or an array.
Sample 4-35 shows the implementation of a MAC frame, using an
array for the variable data. Sample 5-67 shows that same variable-
length MAC frame used as an argument of a procedure, making it
possible to send MAC frames of any (even invalid) lengths effi-
ciently. The high-level capabilities of these languages make design-
ing a high-level transaction interface a breeze.

Similarly, for VHDL and Verilog, you can use the list emulation
techniques shown in “Lists” on page 157. In VHDL, you may be
tempted to use unconstrained arrays, but those only work for input
data. In VHDL, the size of an unconstrained array argument is
determined by the caller and cannot be changed. For output data,
where the amount of data is unknown, a priori, it would not be pos-
sible to increase or decrease the size of the array from within the
procedure to match the amount of data received. The only remain-
ing possibility is using an access to an unconstrained array type.
But that also requires knowing, a priori, the amount of data that will
be received so the correct-size array can be allocated. Some proto-
cols transmit the data size in the early portion of the transaction, but
many simply transmit data for as long as they wish and you have to
live with the amount of data received.

In Verilog, since list emulation requires the declaration and alloca-
tion of the maximum-size list, you might as well save yourself the
trouble and use an maximum-size array with a length indication.
Unfortunately, arrays cannot be passed through interfaces. Instead,
locate the array as a static variable inside the task implementing the
bus-functional procedure. Make sure this procedure it not automatic
to make the buffer static and globally visible. See Sample 5-94 for
an example. The testbench can access the variable-length data
through a hierarchical reference to the data buffer, as shown in
Sample 5-95.
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Sample 5-94.

Variable-
length transac-
tion interface
in Verilog

Sample 5-95.

Using a vari-
able-length
transaction
interface in
Verilog

module eth_mii(...);
task rx;
reg [7:0] frame [0:1517];

reg integer frame_length;
begin

end
endtask

endmodule

module testbench;
eth mii mii{...);

always
begin
mii.rx;
if {mii.frame_length !=- expected_length)
for (1 = 0; 1 <« mii.frame_length; i = i + 1) {
if (mii.frame[i] !== expected[i])
}

end

endmodule

Split Transactions

Transactions may
be composed of
subtransactions.

Provide tenure
procedures.

Many high-performance bus protocols have split transactions. For
example, a “read” transaction could be composed of a separate
address and data tenures. The bus master can perform the address
tenure. While the target device performs the work and buffers data,
the master can perform other bus transactions to other devices. The
master either polls or is interrupted by the first device when it is
ready to complete the read transaction, The master then performs
the second tenure, transferring data from the device, completing the
read transaction. The same target device may be able to handle sev-
eral split and non-split transactions concurrently. Split transactions
may also include out-of-order completion.

Whatever transaction-layer interface you decide on, you will have
to perform those tenures. They should be implemented as separate
subprograms or metheds. As long as they exist, you should make
them public to enable a testbench to have detailed control over the
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Provide complete
transaction proce-
dure.

This is not suffi-
cient to support
random transac-
tion generation.

Provide nonblock-
ing complete
transaction proce-
dure.

atomic tenures on the physical interface. For example, a testbench
may need to create a specific sequence of tenures and transactions
to exercise a particular corner case. If the testbench is too far
removed from the physical interface, it may not be possible to cre-
ate. The low-level tenure procedures should be used only by the
very few testcases responsible for verifying the physical interface
logic.

For any verification project, the bulk of the testcases are concerned
with higher-level functionality, not physical interface logic. They
do not depend on the split nature of the transaction and do not
require detailed control of the physical interface. Having to deal
with the tenures would make writing those testbenches tedious and
cumbersome. You should provide an interface to the split transac-
tion that makes it look like an atomic operation. Internally, it would
execute the tenures as required. But from the testbench’s perspec-
tive, it would appear like an ordinary transaction. The procedure
would wait until the split transaction completes and returns with the
completed data and status.

Providing a transaction-layer interface that includes direct access to
the tenures and a completed split transaction is fine for directed
testcases, What if you wanted to verify the interface operation by
performing random sequences of ordinary and split transactions,
performing as many overlapping transactions concurrently as possi-
ble? A random transaction generator would decide which procedure
to call. To be able to perform random transactions in the middle of a
split transaction, it would be necessary to use the low-level tenure
procedures. This would require that the random generator, after
having generated the start of a split transaction, generates any nec-
essary completion polling tenure and eventually the split transac-
tion termination tenure. All of that intermixed with other split and
ordinary transactions. It is possible to write such a random transac-
tion generator. But it would likely be impossible to constrain (see
“Random Stimulus™ on page 354 for more details on writing con-
strainable generators).

To support a random transaction methodology, you should provide
a complete nonblocking split transaction procedure. I use the term
nonblocking because it may not necessarily execute in zero-time.
The procedure may very well wait while the initial tenure of the
split transaction is applied. But it is nonblocking in that it would not
wait for the completion of the split transaction. It would return
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Sample 5.96,

Nonblocking
split transac-
tion procedure

instead with an indication of the status of the split transaction-—
whether it was accepted by the target device—and a mechanism for
alerting the testbench that the transaction has been completed. Sam-
ple 5-96 shows an implementation in e of an interface to a split read
transaction. The response of the nonblocking procedure is a refer-
ence to a transaction completion descriptor object instance that con-
tains a status indication, a list that will later contain the data
returned and an event that will be emitted when the transaction is
completed. Internally, it would manage all of the details of complet-
ing the transaction, even with the presence of other transactions.
Sample 5-97 shows how such a procedure would be used. It is easy
to fork separate threads that will wait for the completion of the split
transaction and verify their correctness.

struct split_read_response {
status: [DECLINED, PENDING, RETRY, ABORT, OK];
data : list of byte;
event completed;

}i
unit bfm {

split_read{addr: uint (bits: 24);
len : uint}: split_read_response
is {
result = new;
if (!me.setup_split_read{addr, len)) {
result.status = DECLINED;

return;

}: -
result.status = PENDING;
me.register_split_read({addr, len, result);

ti

};

Retries and Completion Status

Transactions may
be retried,

In many protocols, transactions may fail not because they are
invalid but because one of the parties involved in the transaction is
busy or is out-of-sync. The transaction should be retried at a later
time. Only after a certain number of retries is a transaction consid-
ered failed. Should the bus-functional model do the retrying or
should you let the testbench worry about it?
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——————  vyar resp: split_read_response;

Sample 5-97.

Usinganon-  yegp - master®.split_read(0xC0CFFF, 32);
blocking trans- ¢ (resp.status == PENDING)} {

géﬁOHIWOCC' start check_split_response (0x000FFF, 32, resp):
ure }:

check_split_response{addr: uint (bits: 24);
len : uint;
resp: split_read_response}
@sys.any 1s {
sync cycle @resp.completed;

if (data.size() != len) {
dut_error(...):
return;

b3

}

Let the transaction  The bus-functional model should make its best possible effort to

proceduredothe  complete a transaction. That includes retrying transactions that did

ety not complete initially Testbenches should not be burdened with the
repetitive retry operations. On the other hand, a testbench may need
to have control over the number of retries, or whether to even allow
a transaction to be retried. The transaction-layer interface of trans-
actions that can be retried should have a parameter specifying the
maximum number of attempts. Once the transaction has been tried
for the specified number of attempts, it is considered failed. A test-
bench that does not wish a transaction to be retried would simply
specify a single attempt. If the language supports it, provide a
default value for the number of attempts (usually specified in the
protocol) that will not need to be specified for each invocation—
only when a different value is required. Sample 5-98 shows an
example of an MII ethernet transaction-layer interface with control
over the number of transmission attempts.

Symbol-Level Control

Transactions are For most interfaces, the transaction data is not transmitted in paral-
composed of phys- lel, in a single cycle. Instead, the transaction data is divided into

ical symbols. “symbols” transmitted sequentially over multiple cycles. For exam-
ple, a byte transmitted over an RS-232 physical interface is trans-
lated into one-bit symbols. A 1 KB PCI memory read is translated
into 256 32-bit symbols. Some symbols may be added to the trans-
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Sample 5-98.
Retried trans-

action

SymbolHevel
parameters must
be controllable.

Provide a symbol-
level callback
method.

class mii {

function bit send({mac_frame frame,
integer attempts = 10) {
while (attempts—- > 0) {

send = 1;
return;

}
send = 0;
}
}

action data by the protocol for framing, synchronization, or error
protection, For example, a MAC frame is prefixed with an 8-byte
preamble. A USB packet is prefixed with an 8-bit synchronization
pattern.

For each symbol, an interface protocol usually has several control-
lable parameters such as symbol-level flow control and status indi-
cation. But a transaction-layer interface deals with information for
the entire transaction, not individual symbols. This is fine when
verifying functionality that resides behind the interface. But when
verifying the implementation of the interface itself, it is necessary
to have detailed control over all relevant symbol-level parameters.
One way would be to provide a symbol-layer interface that could be
used instead of the transaction-layer interface. This technique
would require writing completely different testbenches to verify the
physical interface from the ones used to verify higher-level func-
tions because the testbenches would use the symbol-layer interface.
This style is fine in a directed methodology, but in a random-based
methodolegy you will not be able to leverage the same generation
and self-checking environment for both classes of testcases.

A better approach is to extend the callback method approach from
the transaction level (“Slave Generators” on page 299) to the sym-
bol level. Before transmitting or receiving a symbol, a callback
methed should be called with the necessary arguments or global
variables to let a testbench modify the default symbol-level behav-
ior. This callback method can let time advance if the protocol sup-
ports symbol-level control flow. Otherwise, the callback method
must complete in zero-time. For example, Sample 5-99 shows the
symbol-level callback method for a slave PCI memory read inter-
face. It controls symbol-level flow control by introducing time
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Sample 5-99.

Symbol-level
callback
method

Use the symbol-
level callback to
inject errors.

advances that will delay the assertion of the target-ready signal. It
also controls byte-enable indications, has the possibility of aborting
the transaction or signaling a parity error for this symbol.

struct pci_symbol {
data : uint:;
be : uint (bits: 4);
abort: bool;
perr : bool;
}i

unit pci_slave ({

pre_symbol_tx{symbol: pci_symbol) @sys.any is
empty;

L:nz.er‘n_read_tx() @pci_clk is {
while (...) {
ltrdy)® = 1'bl;

me.pre_symbol_tx(sym);
if (sym.abort)

f{abrt) ' = 1'Db0;
return;
b
f{trdy) ! = 1'b0;
‘{datal}’ = symbol.data;
‘{omd_be) " = symbol.be;

Vi

Y
}i

From the transaction-layer, it is simple to inject transaction-level
errors such as a bad CRC or a packet that is too short. But how can
you inject errors at the symbol level, such as corrupting a symbol,
violating the handshake protocol or unexpectedly terminating a
transaction? As long as you have control over the symbol-level
parameters in a callback method, why not take this opportunity to
use the symbol-level callback method to inject symbol-level errors?

Simply add parameters for the errors that can be injected. By
default, they are set to not inject errors. If they are not modified in
the caliback method, no errors will be injected. Sample 5-100
shows the symbol-level callback method for a MII ethernet inter-
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Sample 5-160.

Symbol-level

face. From that callback method, it is possible to corrupt the sym-
bol, cause the TX_EN signal to be deasserted, cause the TX _ER
signal to be asserted or abort the frame altogether, When imple-
menting a bus-functional model, it is necessary to provide every

mechanism for breaking the protocol that the design should be able
to sustain.

class mii_symbol {
bit [3:0] data;

bit ;
callback bit e
method with bit abort:
error injection '
class eth_mii {
virtual task pre_symbol_tx{mii_symbol symbol):
task tx(mac_frame frame} {
while (...) {
this.pre_symbol_tx(sym):
if (sym.abort) ({
this.sigs.$tx_en = 1'b0;
return;
}
this.sigs.stxd = sym.data;
this.sigs.$tx _en = sym.tx_en;
this.sigs.$tx_er = sym.tx_er;
}
}
}
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Summary

SUMMARY

Model your clock signals in VHDL or Verilog. Be careful about
time resolution issues, delta cycle alignment and implicit synchro-
nization of asynchronous signals.

Encapsulate repetitive physical-level operations into bus-functional
procedures that provide an effective transaction-level interface.

Understand the interface model of your HVL and use it in the way
it was intended to be used. Provide mechanisms for users to modify
the timing of input and output operations with the lowest possibility
of introducing errors,

Provide callback methods in response monitors to request reply
data. Provide callback methods in bus-functional procedures to
enable access to symbol-level protocol parameters and inject sym-
bol-level errors.

Collect all of the bus-functional procedures for a physical interface
into a bus-functional model. Detect concurrent activation of bus-
functional procedures within the same bus-functional model using a
semaphore.
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CHAPTER6 ARCHITECTING

TESTBENCHES

A testbench need not be a monolithic block. Although Figure 1-1
shows the testbench as a large thing that surrounds the design under
verification, it need not be implemented that way. The design is
also shown in a single block, and it is surely not implemented as a
single unit. Why should the testbench by any different? Figure 6-1
depicts the architecture of a generic testbench. In this chapter, T will
describe how to implement each component,

Figure 6-1.
Typical
testbench
architecture

The previous
chapter was
about low-level
testbench com-
ponents.

Test Function
Data & Cfg| | Self-Checking
Generation ‘
A
v
Bus Design Bus
Funct, »  under »  Funct.
Model Verif. Model
Test Harness

In Chapter 5, we focused on the generation and monitoring of the
low-level signals going into and coming out of the device under
verification. I showed how to abstract them into transactions using
bus-functional models. The emphasis was on the stimulus and
response of interfaces and the need for managing separate execu-
tion threads underneath a useful procedural interface. If you prefer
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This chapter
focuses on the
structure of the
testbench.

A hypothetical
design will be used
to itlustrate the
concepts.

Figure 6-2.

4x4 ATM
switch design

a bottom-up approach to writing testbenches, I snggest you start
with the previous chapter.

This chapter concentrates on implementing the many testcases and
filling the functional coverage models that were identified in your
verification plan. I show how best to structure the bus-functional
models into a transaction-level test harness. This test harness will
create the platform on top of which the self-checking structure and
stimulus sources will be built. I also describe how to create random
generators that can be constrained easily, with a minimum of modi-
fications, from testbench to testbench.

Figure 6-2 shows the interfaces around a hypothetical ATM switch
node design. A management interface allows a processor to read
and wrife internal registers to configure the switch node. This
design will be used throughout this chapter to illustrate important
concepts.

Utopia L1 —»| 4x4 —» Utopia .1
Utopia L1 —» ATM Switch [ Utopia L1

Utopia L1 —» Node — Utopia L1
Utopia L1 —» — Utopia L1
-~
Clock, reset Management

TEST HARNESS

Create a transac-
tion layer test har-
ness.

Encapsulate the
test harness.

All of the testbenches have to interface through an instantiation to
the same design under verification. It is safe to assume that they all
require the use of the same bus-functional models to generate stim-
ulus and to monitor response. Instead of a monolithic block, the
testbenches should be designed with a layer of transaction-level
bus-functional models. This transaction-level layer, common to all
testbenches for the design under verification, is called the rest har-
ness. The test functions required to implement the testcases identi-
fied in the verification plan are built on top of the test harness, as
illustrated in Figure 6-3. The fest function and the harness together
form a testbench.

The encapsulation of a transaction-level test harness in Verilog,
OpenVera or e is relatively simple. The bus-functional model

Test Harness

Figure 6-3.

Structure of a
transaction-
level testbench

Sample 6-1.
Utopia Level 1
bus-functional
model in
OpenVera

The test harness
inctudes every-
thing needed to
operate the design.

Test Function
y
- v Transaction layer
4 Bus Design Bus
5 Funct. under » Funct.
s Model Verif. Model

instances and their connectivity to the design under verification are
encapsulated in a module, class or unit, respectively. The various
test functions then instantiate the encapsulated test harness. The
high-level interface of each bus-functional model is accessed using
a hierarchical name. Sample 6-1 and Sample 6-2 show the public
interface of the bus-functional models required to interface to the
ATM switch node. They were designed and implemented using the
techniques described in the previous chapter, The transaction-level
test harnesses, encapsulating these bus-functional models as illus-
trated in Figure 6-4, are shown in Sample 6-3, Sample 6-4 and
Sample 6-5.

class atm _cell {

port utcopia_Ll_port {
clk;
data;
S0C;
enb;
clav;
I
class utopia L1 {
task new(utopia_Ll port tx_sigs,
utopia_Ll_port rx_sigs):;
task send(atm_cell cell);
function atm_cell receive();

}

The test harness should be self-contained and provide all signals
necessary to operate the design under verification properly, In addi-
tion to all the low-level bus-functional models, the test harness
should include the clock generators and reset procedure. Notice
how the OpenVera and e test harnesses do not include the clock
generator. As mentioned in “Random Generation of Reference Sig-
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Sample 6-2.

Management
interface bus-
fanctional
model in ¢

Figure 6-4.
Test harness
for 4x4 ATM
switch design

Test functions use
procedures in the
test harness.,
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unit mgmt_1f {
addr: string;
data: string;
rd : string;
wr : string;
rdy : string:;

write(wadd: uint (bits: 16},
wdat: uint (bits: 16))
@sys.any is empty;

read(radd: uint (bits: 16)): uint {bits: 16)
@sys.any is empty;

utopia_L1

4x4
ATM Switch <:> mgmt_if
Node

utopia_L1

utopia_L.1

utopia_L1

fv v v 1o

nal Parameters” on page 239, they should be generated in the HDL
simulation. An HVL test harness is always tightly coupled with an
HDL test harness. The HDL test hamess instantiates the design,
provides signals to be monitored and driven by the HVL and sup-
plies clock and constant signals to the design. The HDL test harness
for the e test harness shown in Sample 6-5 is shown in Sample 6-6.

A complete test harness provides a transaction-layer abstraction of
the design to be verified. It provides a foundation on which the data
generation mechanism, the self-checking structure and the func-

tional coverage measurements are built. Test functions are imple- .

mented by using the high-level interface elements in the bus-
functional models and test harness itself. These interface elements
are accessed using their hierarchical names in a single instance of
the test harness. Sample 6-7 shows a partial test function that con-
figures the device then injects an ATM cell in one of the ports,

Test Harness
module harness;
Sample 6-3. : ’
Vaﬂogteﬂ wire TxClk_0, TxClk_1, TxClk_2, TxClk_3;
h e
A%E??;Eﬁh wire RxClav_0, RxClav_1l, RxClav_2, RxClav 3;
node wire [15:0] addr, data; B
wire rd, wr, rdy;
reg reset, clk;
switch_node dut (TxClk_0, .» Cclk, reset);
utop%a_Ll atm_port_0{(T=xC1lk_0, ., RxClav_0);
utop}a_Ll atm_port_1(TxClk_1, .y Rxclav:l);
utop%a_Ll atm_port_1{TxClk_2, .+ RxClav_2);
utopia L1l atm_port_2 (TxClk_3, .y RxClav_3);
mgmt_1if cpu(addr, data, rd, wr, rdy) ;
task reset;
endtask
always
begin
#5 clk = 0;
#5 clk = 1;
end
endmodule
#include “utopia_Li.vrh”
%a‘:II:{‘; 6'4£ #include “mgmt_if.wrh~
h;;ws:?leﬁ #include “switch.if.vri”
AJIdswﬁrh class harness {
node c utopia LIl atm_port(4]:
mgmt_if cpu;
task new() {
th}s.atm_port[O] = new(tx_0, rx_0);
th}s.atm_port[l] = new({tx_1, rx_1);
th}s.atm_port[2] = new(tx_2, rx_2);
this.atm _port[3] = new(tx_3, rx_3);

) this.¢cpu = new (igmt_0) ;

task reset();
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Sample 6-5.

e test harness
for ATM
switch node

Sample 6-6.

Verilog har-
ness for the e
test hamess

import utopla Ll;
import mgmt_if;
unit harness {

atm portid]: list of utecpia_Ll is instance;
cpu : mgmt_if is instance;

keep me.hdl_path() == “~/top”;

keep for each in atm_port {

it.TxClk == appendf (“TxClk_%d”, index);

it'::RxClav == appendf(“RxClav_%d”, index) ;

i
keep cpu.addr ==

keep cpu.rdy ==
reset () Gsys.any

T

module top;
reg TxCik 0,

TxClk_1,

“addr” :
" rdy " ;

is empty:

T=xClk_2, TxClk_3;

».\fiée RxClav_0, RExClav_1, RxClav_2, RxClav_3;

reg [15:0]
wire [15:0]

addr;
data;

reg rd, wr;
wire rdy;
reg reset,

switch_node dut{TxClk_0,

always
begin
#5 clk = 0;
#5 clk = 1;
end
endmedule

clk;

., clk, reset);

VHDL Test Harness

module my_test;

Sample 6-7.
Test function harness th();
using a test
harness initial
begin: test_function
reg ‘ATM_CELL_TYP cell;
th.write(16°h0001, 16 ‘h0010);
th.atm port_0.send(cell):
$finish;
end
endmedule
VHDL TEST HARNESS

Bus-functional
procedures are
encapsulated in a
package.

Bus-functional
model procedures
are cumbersome to
use,

As described in “Encapsulating Bus-Functional Models” on
page 137, VHDL bus-functional procedures are encapsulated in
procedures with signal-class arguments. These procedures can be
used outside of the package by each testbench that requires them,
Sample 6-8 shows the package declaration of bus-functional modei
procedures for the Intel 386SX processor. Notice how all the sig-
nais for the processor bus are required as signal-class arguments in
each procedure,

Sample 6-9 shows a process using the procedures declared in the
package shown in Sample 6-8. They are very cumbersome to use as
all the signals involved in the transaction must be passed to the bus-
functional procedure. Furthermore, there would stil] be a lot of
duplication across multiple testbenches. Fach would have to
declare all interface signals, instantiate the component for the
design under verification and properly connect the ports of the
component to the interface signals. With today’s ASIC and FPGA
packages, the number of interface signals that need to be declared,
then mapped, can easily number in the hundreds. If the inteiface of
the design were to change, even minimally, all testbenches would
need to be modified.
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Sample 6-8.
Bus-func-
tional proce-
dures for an
13868X

Sample 6-9.

Using bus-
functional pro-
cedures

package i386sx is

subtype add_typ is std_logilc_vecter(23 downto 0);
subtype dat_typ is std_logic_vector (15 downto 0};

procedure read(

signal
signal
signal
signal
signal
signal

procedure write(

end i386sx;

wdata: in dat_typ{
signal clk in std_logic;
gignal addr out add_type;

raddr: in add_typ:
rdata: out dat_typf
cik in std_logic;
addr out add_type;
ads out std_logic;
rw : out std_logic:
ready: in std_logic;
data inout dat_typ);

waddr: in add_typ;

gignal ads
gignal rw

signal

signal data

use work.i386sx.all; .
architecture test of bench is

signal clk
signal addr :
signal ads
signal rw :
signal ready:
signal data

begin

duv: design port map (...

testcase: process
variable data: dat_typ;

begin

std_logic;
add_tvpe;
std_logic;
std_logic;
std_logic;
dat_typ:

rw

out: std_logic;

: out std_logic;
ready: in std_logic;
inout dat_typ}:

, clk, addr,

, ready, data,

read (some_address, data,

clk, addr,

ads,

rw, ready,

data) ;

write (some_other_address, some_data,

clk, addr,

ads,

end process testcase;

end test;

rw, ready,

data);

ads,

VHDL Test Harness

A package is the
wrong encapsula-
tion mechanism.

It is not possible to use the same test harnessing strategy in VHDL
as with the other languages. Packages cannot be instantiated in an
architecture because they are not a structural element. They must
somehow first be encapsulated into an entity. Furthermore, VHDL’s
strict scoping rules make it impossible to invoke a procedure in an
entity using a hierarchical name,

Bus-Functional Entity

An entity i8 g bet-
ter encapsulation
mechanism.

Use transaction-
level signals to
control the bus-
functional entity.

This creates a cli-
ent/server relation-
ship,

Finding a way to encapsulate bus-functional procedures into an
entity would have several advantages:

* It would be possible to have multiple instances of the bus-func-
tional model, each with its own internal state information.

* It would be possible to include processes, allowing the inclusion
+ of autonomous behavior and nonblocking procedural interfaces,
as described in “Autonomous Monitors” on page 295,

* It would eliminate having to specify all of the interface signals
in each procedure call. They would be mapped once, when the
entity is instantiated in the test harness.

Because VHDL does not allow hierarchical access into entities, it
will be necessary to use signals on the port of the entity to control
the bus-functional procedures embedded in it. Figure 6-5 depicts
the control structure of a bus-functional entity in VHDL. The phys-
ical interface signais flow through the entity’s port and are con-
nected to the design under verification. An additional pair of signals
is used to exchange transaction-level information between the test
function and the bus-functional procedures. Whether multiple pro-
cesses or a single process is used to implement the functionality of

the bus-functional model depends on the required features of the
transaction-level interface.

The relationship between the test function and the bus-functional
entity is a client/server relationship. Control signals are used to
exchange transaction-level information between the client and the
server. Typically, the test function (the client} initiates a transaction
by causing an event on the control signal to the bus-functional
entity (the server), The test function then waits for the bus-func-
ttonal entity to indicate the completion and status of the transaction
through an event on the other control signal, A single control signal
could be used, but the signal must be resolved.
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Figure 6-5.
Control
structure of a
VHDL bus-
functional
entity

Control signals
should be of
record type.

Sample 6-10.

Client/server
control signal

types

Use atoggling
Boolean to force
an event.

Test >

Design
Function |«
entity
v | Yy
< »
process i« process
architecture

The control signals must be able to transport all of the information
that completely describes a transaction to be executed and the result
of the transaction once it has been completed. This is a perfect
application for records. They can collect data of different t)fpes
under a single structure. Even if a transaction can be described
using a single scalar value, it is a good idea to use a record anyway:
A record will allow the addition of other transaction description
information without requiring changes to the existing test functions
or test harness. Sample 6-17 shows the package declaring the con-
trol record types for the 3865X bus-functional entity.

package 1386sx_pkg is
type kind is (read, write);

type to_srv_ctl is record
do : kind;
addr: integer range 0 tc 16#FFFF#;
data: integer range ¢ to l&6#FFFF#;
go : boolean;

end record;

type frm_srv_ctl is record
data: integer range 0 to 16#FFFF#;
go : boolean;

end record;

end package 1386sx;

Notice how each control record in Sample 6-10 contains a Boolean
field named go. This field is toggled by the client or the server to
force the occurrence of an event on the signal. This way, the pro-
cess waiting on the other side of the control signal will be triggered

VHDL Test Harness

Sample 6-11.

Performing
two identical
operations
back-to-back

after every assignment to the control signal, even if the transaction
description is identical to the previous one. Had the toggling Bool-
ean field not been present, the second of two consecutive identical
operations, as shown in Sample 6-11, would be missed.

to_srv <= {do =>» write,

addr =» (others =» '1'),
data => (others =» '0'));
walt on frm_srv;
to_srv <= (do => write,
addr == (cthers => ‘1),
data =» (others =» ’0’));

The bus-functional entity contains a server process that waits for
events on the input control record. Such an event indicates that a
client requires a transaction to be performed. The process performs
the transaction, then returns any result information back to the cli-
ent by creating an event on the output control signal. Sample 6-12
shows a simple server process for the i386SX bus-functional entity.

Abstracting the Client/Server Protocol

The client must
operate the con-
trol signals to the
SEIVer process
propetly.

Encapsulate the
client/server oper-
ations in proce-
dures.

Sample 6-13 shows a client process accessing the services provided
by the i386SX bus-functional entity shown in Sample 6-12. Notice
how the client process waits for an event on the return signal to
detect the end of the operation.

Defining a communication protocol on signals between the client
and the server processes does mot seem to accomplish anything.
Instead of having to deal with a physical interface documented in
the design specification, we have to deal with an arbitrary protocol
with no specification. Just as the operation on the physical interface
can be encapsulated, the operations between the client and server
also can be encapsulated in procedures. This encapsulation removes
the client process from knowing the details of the protocol with the
server. The protocol can be modified without affecting the testcases
using it through the procedures encapsulating the operations. The
server access procedures should be located in the package contain-
ing the type definition and signal declarations. Their implementa-
tion is tied closely to these control signals and should be located
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Sample 6-12.

Server pro-
cess in bus-
functional
entity

Client processes
use the server
access procedures.

use work.i386sx_pkg.all;
entity i1386ax is

port{clk : in std_logic;
addr cut std_logic_vector;
ads out std_logic:
rw : out std_logic;
ready : in std logic;
data : inout std logic_vector:;
to_grv : in to_srv_ctl;
frm_srv: out frm_srv_ctl);

end entity i386sx;

architecture server of i386sx is
begin
process
variable rdat
variable toggle:
begin
walt on to_srv;
case (to_srv.do) is
when read =

integer;
boolean = TRUE;

read(to_srv.addr, rdat,
clk, addr, ads, rw, ready, data):
when write =»
write(to_srv,addr, to_srv.data,
clk, addr, ads, rw, ready, data);

end case;
frm_srv <= (data =»> rdat, go => toggle):
toggle := not toggle;
end process;
end architecture server;
with them. Sample 6-14 shows how the read and write access pro-
cedures would be added to the package previously shown in Sam-

ple 6-10.

The client processes are now free from knowing the details of the
protocol between the client and the server. To perform an operation,
they simply need to use the appropriate access procedure. The pair
of control signals to and from the server must be passed to the
access procedure to be driven and monitored properly. Sample 6-15
shows how the client process, originally shown in Sample 6-13, is
now oblivious to the client/server protocol.

The testcase must still pass control signals to and from the bus-
functional access procedures. So, what has been gained from the
starting point shown in Sample 6-97 The answer is: a lot.

T

VHDL Test Harness

Sample 6-13,

Client process
controlling the
bus-functional
server

Sample 6-14.
Client/server
access pack-
age

Testbenches are
now removed from
the physical
details.

use work.i386ax_pkg.all;
architecture test of bench is
begin
i386sx_client: process
variable data integer;
variable toggle: boolean := TRUE;
begin

-- Perform a read

to_srv <= (do == read,
addr => ...;
go => toggle);

toggle := not toggle:;
walt on frm_srv;
data := frm_srv.data;

-- Perform a write

to_s8rv <= (do => write;
addr =» ...;
data => ... H

go => toggle);
toggle := not toggle;
wait on frm_srv;

end process 1386sx_client;
end test;

package 1386sx_pky is
procedure read/( addr
data
gignal to_srv
signal frm srv:

in natural;

out mnatural;

out to_srv ctl;
in frm_srv_ctl);

N AT

procedure write( addx : in natural;
data : in natural;
signal to_srv :

out to_srv_ctl;

signal frm srv: in frm srv _ctl);

end package i286sx_pkqg;

No matter how many signals are involved in the physical interface,
you need only pass two signals to the bus-functional access proce-
dures. The testcases are completely removed from the physical
interface of the design under verification. Pins ¢an be added or
removed and polarities can be modified without affecting the exist-
ing testcases. It also becomes possible to create a fest harness as
shown in Figure 6-4.
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Sample 6-15.

Client process
using server
access proce-
dures

Test Harness

The test hamess
contains declara-
tions and function-
ality common to
all testbenches.

Use global control
signals.

use work.i386sx pkg.all;
architecture test of bench is
begin
i386sx_client: process
variable data: integer;
bhegin

-- Perform a read
read(..., data, to_srv, frm_srv):;

-- Perform a write
write{..., ..., to_srv, frm_srv);

end -process i386sx_client;
end architecture test;

The test harness contains elements common to all testcases. These
common elements for a single design are:

* Declaration of the interface signals

¢ Instantiation of the design under verification

» Instantiation of the bus-functional entities

¢ Mapping of interface signals to the ports of the design

e Mapping of interface signals to the ports of bus-functional enti-
ties

Sample 6-16 shows the outline of a test harness using the i3868X
bus-functional entity connected to a i386SX slave device.

The control signals have to be visible to both the client process in
the top-level testcase architecture and the bus-functional instance in
the test harness. This visibility can be accomplished in two ways:

¢ Passing them as ports on the test harness entity

» Making them global signals in a package

Using global signals eliminates the need for any signal to flow
through the test harmess entity. It makes instantiating the test har-
ness in each test function extremely simple as there are no interface
signals to declare nor map. Should the control signals be large
records, it will be more efficient to use a single shared variable to

VHDL Test Harness

Sample 6-16.

VHDL test
harness

Sample 6-17.

Test harness
global control
signals

Use qualified
names for control
signal types and
access procedures,

use work.i386sx pkg.all;

architecture test of harness is
signal clk std_logic := *0*;
signal addr std_logic_wvector;

signal teo_srv : to_srv_ctl;
signal frm_srv: frm_srv_ctl;

begin
dut: entity xvz port map {(clk, ...);
cpu: entity i386sx port map (clk, .y
to_srv, frm srv);
process
begin
wait for 5 ns;
clk <= not clk;
end process;
end architecture server;

transfer the transaction data in both directions and use a pair of sim-
ple Boolean signals to handshake between the client and the server,

use work.i386sx_pkg.all;
package th is

signal to_srv : to_srv_typ;
signal frm_srv: frm_srv_typ;

end package th;

In a test hamness for a real design, there may be a dozen different
bus-functional entities, each with different control signals and
access procedures. A real-life client test function, creating a com-
plex testcase, uses all of them. It may be difficult to trace the source
of each identifier and ensure that all identifiers are unique across all
access packages. In fact, making identifier uniqueness a require-
ment would place an undue burden on the authoring and reusability
of these packages.

The identifier tracing and collision problems can be eliminated by
using qualified names when using control record types and access
procedures, Sampie 6-18 shows a test function using qualified
names to access the read procedure out of the i386sx _pkg package.
Notice how the use statement for the package does not specify .all
to make all of the identifiers it contains visible,
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Sample 6-18.
Client tests
function using
qualified iden-
tifiers

use work.i386asx_pkg;
use work.th;
architecture test of bench is
begin
1386sx_client: process
variable data: integer;
begin

-- Perform a read
i386ex _pkg.read(..., data,
th.to_srv, th.frm srv);
end i386sx_client;
end test;

Multiple Server Instances

Provide an array of
control signals for
multiple instances
of the same server
Processes.

Sample 6-19.

Array of cli-
ent/server con-
trol signals for
multiple bus-
functional
entity
instances

Designs often have multiple instances of identical interfaces. For
example, the ATM switch node example design has four Utopia
Level 1 input and output ports, all using the same physical protocol.
Each can be stimulated or monitored using separate instances of the
bus-functional entity. The client test functions need to have a way
to identify which instance they want to operate on to perform oper-
ations on the proper port on the design.

Using an array of control signals, one pair for each server, meets
this requirement. Sample 6-19 shows the test hamess package con-
taining a global array of control signals, while Sample 6-20 shows
the instances of the bus-functional entity, each driven using a differ-
ent pair of control signals.

use ‘utcpia_Ll_pkg;
package th is

type to_ulLl ctl _ary 1is array({integer range <)
of uteopia Ll pkg.to srv_ctl;

type frm_ull_ctl_ary is array{integer range <=)
of utopia_Ll_pkg.frm_srv_ctl;

to_ulLl_ctl_ary (0 to 3);
frm_uLl ctl_ary(0 to 3);

signal to_uLl
signal frm_ulLl

end package th;

VHDL Test Harness

Sampie 6-20.

VHDL test
harness for
ATM switch
node

‘You may be able to
use the for-gener-
ate statement.

Sample 6-21.

Generating
multiple
instances of a
SEIVEr Process

Testbench genera-
tion tools can help
in creating the test
harness and access
packages.

use work.th;
architecture test of harness is

begin
dut: entity switch_node port map (clk, .

U0: entity utopia_Ll

port map (..., to_srv(0), frm_srv(0)};
Ul: entity utopia_ Ll

port map (..., to_srv{l), frm_srv(1));
U2: entity utopia_ L1

port map (..., to_srv (2}, frm_srv(2));
U3: entity utopia_Li

port map (..., to_srv(3), frm_srv(3));

end architecture test;

If the physical signals for the multiple instances of a port are
declared properly using arrays, a for-generate statement can be
used to replicate the instances of the bus-functional entity automati-
cally. Sample 6-21 iltustrates this replication.

use work.rs232.all;
architecture test of bench is
signal TxClk: std_logic_vector(0 to 3):

begin

dut: entity switch_node
port map (TxXClk_0 => TxClk{0), ...):

U: for I in TxClk’range generate
Ll: entity utopia_Iil
port map (..., to_srv(I}, frm_srv{I)):

end generate U;
end test;

If you are discouraged by the amount of work required to imple-
ment a VHDL test harness and access packages, remember that it
will be the most leveraged verification code. It will be used by all
testbenches so investing in implementing a test harness that is easy
to use returns the additional effort many times. Testbench genera-
tion tools, such as Quickbench by Forte Design Systems, can auto-
mate the generation of the test harness from a graphical
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specification of the timing diagrams describing the interface opera-
tions.

DESIGN CONFIGURATION

Most designs
require configura-
tion,

Avoid using one or
two configura-
tions,

Unless you are verifying a very simple design, or an implementa-
tion unit of a much larger design, it will be necessary to perform
certain configuration operations before it will be possible to apply
data to and observe data from the design. Configuration may be as
simple as enabling some data path, or it may be as complicated as
generating, then downloading, firmware code. It may involve writ-
ing to internal registers, writing to an embedded memory or setting
external pins to particular levels.

Because of the often complex nature of a device configuration, it is
not unusual for verification to proceed with only one or two device
configurations. Device configurations are maintained as a series of
register write operations that “magically” produce a configuration.
The testbenches are then written according to the configuration
usually loaded. Unfortunately, this will likely prevent some bugs
from being exercised. Some unexpected correlation may exist
between different configuration parameters. If these parameters are
not exercised, the correlation will not be highlighted.

Abstracting Design Confignration

Model the config-
uration.

Do not model the
implementation of
the configuration.

Instead of relying on an implicit knowledge of the current design
configuration, why not create a formal model of the configurable
clements of the design? That model could then be used by the self-
checking structure (see “Self-Checking Testbenches” on page 341)
to determine the correctness of the response. For example, a design
could have an input pin that can be used to select between two dif-
ferent management interfaces. As illustrated in Sample 6-22, you
can use an enumerated type to model the currently selected inter-
face. That enumerated type can then be passed to the test harness to
instantiate the proper bus-functional model based on the interface
configuration. The test haress would also use the value to deter-
mine the polarity used to drive the interface selection pin.

Even though the configuration of the device is expressed in terms
of 1's and (s in various bit fields in various registers, it is not nec-
essary to use the same approach when modeling a device configura-

Design Configuration

Sample 6-22.

Modeling
interface con-
figuration
using e

Sample 6-23.
Modeling con-
figuration
function, not
implementa-
tion

type mgmt_if mode [INTEL, MOTOROLA];

struct device_cfg {
mgmt_if: mgmt_if_mode;
}i

unit harness {
cfg: device_cfg;
cpu: mgmt_if is instance;
keep cpu.mode == me.cfg.mgmt_if;

when INTEL harness |
run() is also {
‘int_mot' = 1'bil:
ri
}i

when MOTOROLA harness {
run(}) is also {
‘int_mot’ = 1/b0%
}i
Yi
r:

tion. Instead of maintaining an image of the register values, model
t.he purpose and function of the configuration. A high-level descrip-
tion of the device configuration will be much easier to use in the

self-checking structure and won’t necessitate the interpretation of
low-level bit fields.

For example, the configuration of the switch table in the example
ATM switch node design could be implemented as a series of bits in
a register. If bit x in register y is set, then any cell with a VPI value
equal to y is forwarded to output port x, As shown in Sample 6-23,
the same information can be modeled in a more abstract fashion by
using an array of a list of integers. Cells with a VPI value of y are

forwarded to all ports whose number is found in the list at index ¥y
of the array,

class to_ports {
bit [1:0] number(];
}
class device_cfg {
to_ports switch_table([256];
} .
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Collect all device
configuration
information in a
single record.

As shown in Sample 6-22 and Sample 6-23, it is good practice to
collect all device configuration information under a single descrip-
tor object. This technique makes it easier to pass it to the test har-
ness and the self-checking structure. Collecting device
configuration information will also make it possible to create con-
straints and relationships between various configuration items and
include methods to ensure internal consistency.

Configuring the Design

Compile the con-
figuration descrip-
tion into bit fields.

Sample 6-24.

Translating a
high-level

configuration

descriptor in
OpenVera

Once the device configuration is captured in an instance of the con-
figuration descriptor, it will be necessary to configure the design to
match. This step will necessitate the translation of the various con-
figuration items into the appropriate bit field values in the appropri-
ate registers. This step may seem like a daunting task—and it
usually is—but it is simply formally coding the process you would
have to perform intellectually otherwise. This translation will pro-
vide for a better documentation of the device configuration process.
This translation will also ensure that configuring the design to
match is repeatable, should the location of various bits fields be
reorganized or their encoding modified. Sample 6-24 shows how
the switch table in Sample 6-23 could be compiled into the come-
sponding bit field values in the corresponding registers.

class device_cfg {
to_ports switch_table[4];

task apply{cpu: mgmb_i£f) {
integer i, j, ok;
bit [15:03 entry;

for (i = 0; 1 < 256; i++} {
for (ok = assoc_index(FIRST,
switch_table[i] .number, Jj);
ok;
ok = assoc_index (NEXT,
switch_tabkle([i] .number, j)}
{
entryl[switch_table[i] .number[]j]] = 1;
}

cpu.write(16'h0800 + i, entry);

Design Configuration

Grow the configu-
ration capability.

Assert that unsup-
ported configura-
tions are not used.

Sample 6-25.
Detecting
unsupported
configurations

Itis not necessary to implement the translation process of the entire
configuration descriptor from day one. The first simulations will
likely be performed using a simple device configuration, leaving
the bulk of the configuration parameters in their default state.
Therefore, translate only that part of the configuration descriptor
tl.lat is relevant for these first simulations. As more and more con-
figuration parameters are being verified or are supported by the
self—cl.lecking structure, they should be added to the translation pro-
cess similarly. Eventually, you will end up with the entire configu-

ration descriptor appropriately translated and programmed into the
device.

While the configuration translation process does not support certain
configuration parameters, you must ensure that they are not acci-
dentally used in a simulation, The translation procedure must check
that all unsupported configuration parameters are at their default
values. Sample 6-25 shows the translation process for the manage-
ment interface configuration signal. Because one of the modes is
not currently available (because the bus-functional model may not
be ready yet), it will report an error if the unsupported configuration

1s attempted.
type mgmt _if mode [INTEL, MCTORQLA] ;

struct device_cfg {
mgmt_if: mogmt_if mode

e

r

unit harness {
cfyg: device_cfg;
cpu: mgmt_if is instance;
keep cpu.mode == me.cfg.mgmt_if;

when INTEL harness {

run{) is also {

: dut_error{“Intel mgmt i/f not avail!~”);
b

when MOTOROLA harness {
run() is also {
‘int_mot’ = 1'b0;
}i
}:
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Random Design Configuration

Randomize the
configaration.

Add constraints to
match limitations,

Sample 6-26.

Support limi-
tation con-
straints

Add constraints to
generate simple
debug configura-
tions.

Use functional
coverage to iden-
tify configurations
that were verified.

Once you have a descriptor capable of coherently descﬁl?ing any
possible configuration of your design, why bother specifying it
manually? You’d probably always be specifying the same copﬁgu—
ration anyway, which is exactly the problem we were trying to
avoid. If you can generate random instructions, packets or data
items, why not generate a random device configuration as WF:H? By
using a different randomly generated device configuration in each
simulation run, you quickly will cover many more combinations. If
an unintended correlation between parameters exists, it is likely to
be exposed.

But what about the limitations of your configuration translation
procedure? If an unsupported configuration is generated, it will
cause an error to be reported. You should maintain a set of con-
traints that match the current limitation in the device configuration
support. As more and more of the configuration parameters are sup-
ported, constraints are removed. Sample 6-26 shows the constraints
that would be added to all simulation runs temporarily to prevent a
configuration, unsupported by the test harness shown in Sample 6-
25, from being generated.

extend device_cfg {
keep mgmt_if != INTEL;
Yi

Likewise, a completely random configuration is not likely to be
useful for the first simulations. In the early stage of a project, a
design will contain many functional bugs. They will be easit?r to
identify and debug if a simple configuration is used. The first simu-
lations should be executed with constraints on the configuration
descriptor to generate a simple configuration. Once the desig‘n sim-
ulates successfully, these constraints are removed to increase imme-
diately the number of configuration combinations that can be
verified.

If the device configuration is generated randomly, how do you
know which configurations you have verified? Simple: A device
configuration is treated just like a feature of the design. All intt?rest—
ing and relevant configurations should be identified in the verifica-

Self-Checking Testbenches

Randomize sys-
tem configuration.

tion plan. They should be included in the functional coverage
mode] of the design. Functional coverage measurements will iden-
tify which configurations were indeed verified and the ones that
remain to be verified.

If your design can be used in different system configurations, why
limit the testbench structure to just one of the possibilities? The
configuration of the system under verification can be generated ran-
domly as well. For example, a USB hub design could be sur-
rounded by a randomly selected set of devices. Some devices would
be low speed, others full speed. Some could have asynchronous
endpoints, others have multiple interfaces with alternate settings.
Some devices actually could be another instance of the USB hub
with further devices connected to it. Based on the randomly gener-
ated system configuration, the necessary instances of the design
under verification are created and connected to the necessary
instances of bus-functional models.

SELF-CHECKING TESTBENCHES

Testbenches must
be self-checking.

Define what to
check.

It will be the most
complex portion of
your testbench.

As discussed in “Verifying the Response” on page 95, visually
inspecting simulation results to determine functional correctness is
not an acceptable long-term strategy. Whatever intellectual process
you would go through to identify an error visually in the simulation
result must be coded in your testbench. This technique will let the
testbench detect errors and declare success or failure on its own.
Coding error detection into your testbenches will free you to work
on other tasks while the design is autonomously subjected to hun-
dreds of simulations.

The problem with verification is that you cannot find an error
where you are not looking, It is therefore necessary, during the ver-
ification planning stage, to identify all of the failure modes that
must be checked for and how they can be detected. Typical correct-
ness criteria include data transformation, data ordering, protocol
correctness, data losses and design state. The requirement of the
self-checking mechanism must be specified and reviewed to ensure
that a potential failure will not go undetected.

After the completion of a project, you will find that the largest,
most complex component of the testbenches is the self-checking
structure. It will have been the portion that required the most
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Why is this section
so short?

General imple-
mentation tech-
niques are
presented.

anthoring and maintenance effort. The self-checking structure is
also the most critical portion as it is responsible for declaring the
functional correctness of the design. It will embody a duplication of
the specified functionality of the design under verification.

If the self-checking structure is the most complex and largest por-
tion of a verification project, why is it such a small portion of this
book? That’s because the bulk of the functionality in the self-check-
ing structure will be to model the expected functionality of the
design under verification. That is unique to every design and cannot
be described in a generic fashion in a book. Each class of function
requires different approaches and different mechanisms for identi-
fying failures. Each class of design could be the topic of its own
book.

This section presents various techniques for implementing the self-
checking structure. Which one to use depends on the class of design
under verification. The techniques can also be used in combination.
Some techniques depend on the availability of reference models.
Others rely on the availability of unmodified data payloads. Once
you have specified the requirements of the self-checking structure,
use the necessary techniques to implement them.

Hard Caoded Response

Some techniques
require hard-coded
stimulus and con-
figuration.

It must be repli-
cated for each
testcase.

The self-checking strategy used to verify the muxed flip-flop in
“Self-Checking Testbenches” on page 256 relied on hard coded
response checking. The function and configuration of the device
under verification was very simple. The response could be checked
for each individual input value. To hardcode a response in a test-
bench requires a known configuration and a known input stream. It
is therefore only applicable to directed testcases. Sample 6-27
shows the pseudo-code for a directed testcase with a hardcoded
response on the ATM switch node design. The objective of this
testcase is to verify that cells from every input port can be switched
to every output port.

Each testcase is supposed to verify a different feature of the design,
This requirement needs a different configuration or a different input
data stream. This setup will yield a different response. If a hard-
coded response strategy is used, it will be necessary to replicate the
response checking in each testbench.

Self-Checking Testbenches

Sample 6-27,
Psendo-code
for hardcoded
response

Errors can slip
through easily.

Data Tagging

Packets have
untouched data
fields.

Use the untouched
fields to encode
the expected tran-
formation.

Program configuration:
for x in 0..3:
vpi x -» output port #x
for out_port in 0..3:
fork
{
for in_port in 0..3:
generate atm cell with:
vp% == out port;
vcel == in_port:
send cell on porti(in_port}:

{
for in_port in 0..3:
wait for cell on port(out_port);
assert cell.vpl == out_port;
assert cell.vei == in_port;
}
join

Because the response being checked is crafted to the testcase, it
tends to ignore other potential problems. It is assumed that the other
functions operate correctly and that any problem would be caught
by the testcase targeting those functions. Should an unexpected cor-
relation or comer case exist, it will likely go undetected if it is acci-
dentally created in a testcase that focuses on different features.

Many designs use some of the input information for processing,
sometimes transforming it, but leave other portions of the input
untouched and forward it, intact, all the way through the design to
an output. Examples abound in the datacom industry. They inciude
ethernet hubs, IP routers, ATM switches and SONET framers.

The portion of the data input that passes untouched through the
design under verification can be put to good use. It is often called
payload and the term packet or frame often is used to describe the
unit of data processed by the design. You must first determine,
through a proper check, that the payload information is indeed not
modified by the design. Subsequently, the payload information can
be used to describe the expected destination, position and transfor-
mation for this packet. For each packet received, the output monitor
uses the information in the payload to determine if the packet was
processed appropriately.
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This simplifies the
testbench control
structure.

Figure 6-6.

Testbench
structure for
the switch
node design

Include all neces-
sary information in
the payload to
determine func-
tional correctness.

Figure 6-7.

Example

packet payload

structure

This self-checking strategy usually lends itself to the simplest self-
checking structures. All of the intelligence is located in independent
output menitors. The control of this type of testbench is simple
because all the processing (stimulus and specification of the
expected response) is performed in a single location: the stimulus
generator. Some minor orchestration between the generators may
be required in some testcases when it is necessary to synchronize
traffic patterns to create interesting scenarios. Figure 6-6 shows the
structure of a testbench using data tagging to verify the example
switch node design example.

» Gen P Mon
g » |_._>
P P Gen Ll I Mon
% —I—b 4x4
& l—} Switch Node
=
g » Gen » = l——> Mon

Gen » Mon

The payload must contain all necessary information to determine if
a particular packet came out of the appropriate output, in the proper
sequence and with the appropriate transformation of its control
information. For example, assume the success criteria is that the
packets for a given input stream be received in the proper order by
the proper output port. The payload should contain a unique stream
identifier, a sequence number and an output port identifier, as
shown in Figure 6-7.

v

< Payload

Stream| Seq| Output
Header 1B | Nur Port ID

Random Filler

CRC

The output monitor needs to verify that the output identifier
matches its own identifier. It also needs to verify that the sequence
number is equal to the previously received sequence number in that
strearn plus one, as ouflined in Sample 6-28. A CRC value is used
to verify that the payload was indeed not modified by the design.

Self-Checking Testbenches

Sample 6-28.

Implementa-

tion using pay-
load informa-

tion to
determine

functional cor-

rectness

Use data tagging
in collaboration
with scoreboard-
ing.

while (1)
atm_cell cell;

cell = th.ulLl_Q.receive();
// Cell was corrupted?

if (cell.pavloadl47] !== cell.pavlocad_crc{)) {

continue;

h

// Cell is for this port?

if (cell.payload[0] !== my id) ...;

// Packet in correct sequence?

if {last_seglcell.payload[1l]l] + 1 !=

{cell.paylecad(2], cell.payload[3]1})

// Reset sequence number

last_seqglcell .payload[l]] =
{cell.payicadi2], cell.payload[3]};

L3

}

Should it be possible for a packet to have a payload too short to
contain all of the tag information, another self-checking strategy—
such as scoreboarding—must be used in concert with data tagging.
When present in the payload, the tag information is used by the out-
put monitor to quickly search the scoreboard to confirm correctness
of the received object. When not available, the scoreboard is
searched normally, to ensure that the received object is indeed
expected. For more details on scoreboarding, see “Scoreboarding”
on page 348.

Reference Models

You can use a ref-
erence model,

Figure 6-8.

Using a
reference
model to
predict output

Reference models
rarely exist.

As illustrated in Figure 6-8, the reference model and the design
under verification are subjected to the same stimulus and their out-
put is monitored and compared for discrepancies constantly.

o| Reference

Model
y
Stimulus o | Design Under o| Response
Generator Verification

Comparator

The problem with this strategy is that reference models rarely exist.
Reference models are available only during a re-design exercise
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It is a popular
strategy for pro-
€eS3018,

The model need
not run concur-
rently.

Figure 6-9.

External
output
comparison

Figure 6-10.

External input
generation

Itis a force behind
C-based verifica-
tion.

where backward compatibility is required and when they f.orm an
integral part of the specification. Pure backward compatlbl'e re-
designs are rare as the re-design is often used as an opportunity to
increase performance, add to the number of ports or add new fea-
tures. That only leaves reference models that exist as part of the
specification.

Some classes of designs are not fully specified on paper. Rather,
they are specified using an executable model that was used to
explore architectural and performance trade-offs. Because .the
model is the specification, it is golden by definition. It is the typical
approach used for general-purpose and digital signal processors.

Often, the difficulty of integrating the reference model with the
design simulation prevents it from being simulated concurreqtly
with the design. The output is thus compared in a post-processing
step, as illustrated in Figure 6-9. The input can be gener.?ted exter-
nally similarly when the reference model includes a suitable data
generator, as depicted in Figare 6-10.

Simulator
Stimulus o| Design Under File
Generator " Verification N )
A h 4
@—} Reference Outpl}t
Model Comparison
Stimulus o Reference I( File )
Generator Model
h 4 L
( File \,- P Design Under ' g Outpl..lt
Verification Comparisen
Simulator

The fact that these reference models are usually implemented in C
or C++ is a force behind using C or C++ as a simulation language
for the design and verification. It is thought that by using a common
language the design and verification can proceed smoothly from

Self-Checking Testbenches

system-level and architectural-specification down to detailed
implementation. As I write these lines in the middle of an economic

downturn it appears that economic conditions! more than method-
ology make this solution attractive. Time will tell whether it proves
to be the solution everyone claims it is.

Transfer Function

Model the data
transformation,

Figure 6-11.
Reproducing
e

transformation

to predict
output

It's not the same as
areference model.

A transfer function is used to reproduce any data transformation
performed by the design to determine which output value to expect,
as illustrated in Figure 6-11. The transfer function is often used in
concert with a scoreboard (see “Scoreboarding” on page 348). The
transfer function uses the design configuration descriptor to per-
form the same transformation. Data transformation is not limited to
computation and modification of fields and values inside each data
item. Data transformation also includes the generation of new data
items (for example IP segments from a TCP packet), the identifica-
tion of ordering and destination for the data item and computation
of the next state of the design when executing an instruction.

N Transfer
Function

A

Stimulus
Generator

o Design Under
Verification

o| Response
Monitor

Isn't a transfer function the same thing as a reference model?

Figure 6-11 sure looks like Figure 6-8!2 The answer is no, for sev-
eral reasons. First, a transfer function does not exist a priori. Sec-
ond, it is not golden by definition. As simulations will be run and
errors reported, there will be as many errors in the transfer function
as in the design itself. Third, a transfer function does not have low-
level interfaces. When a packet or an instruction is sent from the
stimulus generator to the transfer function, it does not use a physi-
cal-level protocol and low-level signals. Instead, each data item is
passed as an atomic object using a procedural interface. Similarly,

I. Most C simulation tools are free.
2. In fact, one was cut and pasted from the other!
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Scoreboarding

A scoreboard is a
data structure,

A scoreboard
holds expected
data.

Figure 6-12.

Scoreboarding

The data structure
depends on the
self-checking
requirements.

the transformed data is stored into the scoreboard or forwarded to
the response monitor using a high-level procedural interface.

The definition of scoreboard is definitely not standardized across
the industry. For some, it is the entire self-checking structure,
including the transfer function or reference model, th‘? -expecte.d
data storage mechanism and the output comparison function. In this
book, the definition of scoreboard is limited to the data structure
used to hold the expected data for ease of comparison against the

monitored output values.

A scoreboard is a data structure that holds data expected to be
received by the output monitor. As illustrated in Figure 6—.12, the
transfer function adds data to the scoreboard. Any data received by
the output monitor is compared against the data in the scoreboard.
If an identical data item is found, the design produced the expected
response, If an identical data item is not found in the scqreboard, an
error is reported. At the end of the simulation, any data items left in
the scoreboard were lost in the design—which may or may not be

an error.

Stimulus o| Design Under N Response
Generator Verification Monitor
Scoreboard
o| Transfer
"| Function v v
v
v
) 4E
v

Just as there is no single definition of scoreboard, there isr}’t a sin-
gle scoreboard kind or structure. Each scoreboard is designed to
meet the peeds of the self-checking requirements. Some score-
boards are simply scalar variables holding just one data item at a
time. Some scoreboards are lists of lists of data items. A scorebor:'lrd
may be centralized into a single data structure or it may be dislfnb—
uted in the comparison functions attached to each output monitor.

Self-Checking Testbenches

Use a Hst if order-
ing is important,

Optimize the look-
up function.

Refer to a data
structure book.

The self-checking structure of a testbench may be composed of a
single scoreboard or of a series of scoreboards daisy-chained one
into one another.

If the design is supposed to maintain the original order of the input
data stream, the scoreboard is usually implemented using a list. The
output produced by a functionally correct design would be found, in
order, in the list. If multiple data streams are multiplexed onto a sin-
gle data stream with no ordering relationship between them, use
one list per input stream. Any data item received from the design
must be found at the head of one of the lists. The scoreboard for the
example ATM switch node design would be composed of four sets
of four lists: one set per output port, one list per input port, An ATM
cell would be added to the appropriate list based on the Input port
where it is injected and the expected destination ports.

When a new data item is received from the design by an output
monitor, it must be compared against a data item in the scoreboard.
For simple designs, it may be necessary only to look at the data
item at the head of a very specific list. For more complex designs
where data losses are possible or ordering is difficult to predict, out-
put data may come in an apparent random order. It is therefore
important to make the look-up operation as efficient as possible to
identify the output data as valid or not quickly. If you have to search
through all of the data items in the entire scoreboard, simulations
will take forever to run. In e, use keyed lists. In OpenVera, use asso-
ciative arrays.

Designing a scoreboard is about designing a suitable data structure
that will meet the self-checking requirements of the design. It has to
be efficient, both in terms of runtime and storage. A scoreboard that
is expected to hold thousands of very large packets must be given a
lot of careful attention. You have to watch out for memory leaks as
objects are discarded after being compared. It would be pointless
for me to describe in this book what has been the object of several
other books. Lists, hash functions, circular buffers, lockup tables,
queues, indexing strategies and the like have already been
described better than I ever could. T recommend you look up the
computer science section of your local technical bookstore for a
textbook on data structures.
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Integration with the Transaction Layer

The self-checking
structure must be
visible globally.

Encapsulate the
self-checking
structure.

Sample 6-29.

Definition of
the self-check-
ing structure
for the ATM
switch node

Make the self-
checking structure
a global instance.

Pass the self-

checking structure
instance to all bus-
functional models.

The self-checking structure must be accessible from almost every
component of the testbench. The configuration generator needs to
pass the device configuration descriptor to it. The stimulus genera-
tors need to forward generated input data to it. The bus-functional
models need to inform the self-checking structure of any unex-
pected events that occurred during the data transmission. Output
monitors must indicate that new output data has been received to
verify its correctness.

Whatever strategy is used to make the self-checking strocture visi-

. ble to all compenents of the testbench, it will be easier if it is encap-

sulated as a single object. Provide a transaction-level interface that
will be used to notify the self-checking structure of new data being
injected or received. Sample 6-29 shows the definition of a possible
self-checking structure for the example ATM switch node.

unit self_ check {
cfg: device_cfg;

sent (cell : atm_cell,
on_port: uint (bits: 2}) is empty;
received (cell : atm_cell,
on_port: uint (bits: 2}) is empty;
b

One way to make the self-checking structure visible to all compo-
nents of the testbench is to make its instance global. In e, include it
in the sys struct. In OpenVera, make it a program variable.

Another way to make the self-checking structure visible to all com-
ponents is to extend each component with a reference to the score-
beard instance. The test harness is then built of these extended bus-
functional models, all sharing a reference to the same scoreboard
structure instance, Sample 6-30 shows how the OpenVera bus-func-
tional model and harness defined in Sample 6-4 are extended and
Sample 6-31 shows how those in e from Sample 6-5 are extended.
For OpenVera, the instance of the self-checking structure is passed
via an additional constructor argument whereas a constraint is used
to set the reference valuve in e.

Self-Checking Testbenches

Sample 6-30.

Extending an
OpenVera bus-
functional
moedel and test
harness to
include self-
checking

Sample 6-31.
Extending an ¢
bus-functional
model and
harness to
include self-
checking

For each transac-
tion on the design,
notify the score-
board.

#include “gelf_checking.vrh”
#include “harness.vrh”
class sc_utopia_ Ll extends utopia_Ll {
self_checking sc;
task new(self_ checking sc, PR B ¢
super.new(...);
this.sc = sc;

}

class sc_harness extends harness {
self_checking sc:
task new() {
sc_utopia_ L1 ull;
super.newl() ;
this.s¢ = new;
my_ulLl = new(this.sc, tx_0, rx_0);
this.atm_port[0] = my_uLl;

import self_checking;

import harness;

extend utopia_IL1l {

sc: self checking is instance;

}i

extend harness {
sc: self checking is instance;
keep for each in me.atm_port {
it.sc == me.zc;
}i
}:

Once the self-checking structure is visible by all components of the
testbench, it is simple to extend the callback methods in the bus-
functional models to invoke the proper transaction-level procedures
in the self-checking structure at the proper time. Sample 6-32
shows how to complete the integration of the self-checking struc-
ture with the transaction-layer test harness.
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Sample 6-32,

Calling the
fransaction-
level proce-
dures in call-

import self_checking;

import harness;

extend utopia_ Ll {
port_num: uint;
s¢: self checking is instance;
keep for each in me.atm port {

back methods it.port_num == index;
}i
post_cell_tx(cell: atm_cell} is also {
me.sc.8ent(cell, me.port_num};
}i
post_cell _rx(cell: atm_cell} is also {
me.sc.received(cell, me.port_num);
Yi
1i
DIRECTED STIMULUS
Stimulus is hard-  Directed stimulus is specified in the verification plan and hard-
coded. coded for each testcase. Executing a testcase requires simulating
the testbench that includes the directed stimulus for that testcase, Tt
is used to implement each directed testcase specified using the
approach defined in “Directed Testbenches Approach” on
page 104. Sample 6-33 shows a directed testcase used to debug a
CPU interface: It “generates” a write cycle followed by a read cycle
at the same address and verifies that the readback value is correct.
e rogram simple
Sample 6-33. 7 o
Directed harness th = new;
i'lebug stimu- bit [15:0] actual;
us

Can include ran-
dom filling.

352

th.cpu.write (16 "h00FF, 16'hABCD);
actual = th.c¢pu.read{16'h00FF);
if {actual !== 16" hABCD)

}

Directed stimulus need not be specified 100%. The part that is
coded explicitly usually only pertains to the testcase being imple-
mented. The data that is deemed irrelevant for this testcase is usu-
ally filled with random—but valid—values. For example, the
content of an ethernet frame could be filled with random values,
except for the VLAN tag that is the objective of the testcase, The
sequence of VLAN tag values would be hardcoded in the testcase

Directed Stimulus

Sample 6-34.
Directed
instruction
sequence stim-
uius

Other streams can
be generated ran-
domly.

- Sample 6-35.
Random back-
ground stimu-
lus

while the remaining data fields would be generated randomly. Sam-
ple 6-34 shows an example of directed stimulus for an instruction
stream. The content of the operands is randomized while the actual
sequence of opcodes is hardcoded.

void = ingtr.randomize() with {
opcode == CMP;

Ti

repeat (3) {
void = opcode.randomize() with {

opcode == NOE;

Yi

}:

void = instr.randomize() with {
opcode == BLT;

}i

Directed testcases often concentrate on a single data stream when
creating a stimulus sequence. The other streams are left idle Or can
be generated randomly. In the ATM switch node example, directed
stimulus can be specified for the cell stream on port #) while ran-
dom traffic is injected in the other ports, as shown in Sample 6-35.

unit testcase { ‘
. th: harness is instance;

directed_stim() @sys.any is {
me.th.atm port([0].send(cell);
¥

bg_noise{on_port: uint) @sys.any is {
var cell: atm_cell;
while (1) {
gen cell;

me.th.atm_port[on_port]. send(cell) ;

run() is alsoc {
start me.directed_stim();
start me.bg_noise(l):
start me.bg_noise(2);
start me.bg_ncise(3);

b
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Directed stimulus
implements
testcases.

Even though some random stimulus was used, the nature of
directed stimulus is always tied to a specific testcase. Each directed
testbench can be tied to a specific testcase. It was written specifi-
cally to implement that testcase and no other. If there are one hun-
dred directed testcases to write, there will be one hundred sets of
directed stimulus. Any random stimulus included in directed
testcases is usually ignored in the response checking.

RANDOM STIMULUS

Generators create
the stimulus.

Random genera-
tion is more than
calling $random.

Random stimulus is created by a random generator that can be con-
strained according to the requirement of the verification plan. Exe-
cuting a testcase requires simulating the random testbench with a
seed that will hit the functional coverage point that corresponds to
the testcase. They are used to create automated verification envi-
ronments specified using the approach defined in “Coverage-
Driven Random-Based Appreach” on page 109.

Stimulus generation today has evolved far beyond random genera-
tion of individual scalar values using the $random system task. The
generation components of a verification environment are designed
to generate two subsets of all possible stimuli autonomously. The
first is that subset that is legal, i.e., the possible inputs. The second
is that subset of the first that is defined by the functional coverage
models of the verification plan,

Atomic Generation

Generating a
stream of random
data is easy.

Define termina-
tion mechanisms.

Sample 6-36 shows a simple random ATM cell generator. It should
be encapsulated in an object, like a bus-functional model. A call-
back method is used to enable its integration within a testbench, as
shown in Sample 6-37. The same code could be used to generate
CPU instructions, bus cycles, digitized signal samples or any other
input data stream required by the design under verification.

The simple random generator will always generate 100 data items
then terminate. This number is completely arbitrary and is unlikely
to satisfy the needs of all testbenches. During initial design debug
stage, generating just a single data item is often required. And a
random testbench must run for much longer to increase the likeli-
hood that functional coverage points will be hit. Generators should
have several termination mechanisms that can be armed at the start

Random Stimulus

Sample 6-36.
Simple ran-

dom generator

—_—

Sample 6-37.
Integration of
& generator
object

class atm_gen {
integer id;

virtual task posthcell_gen_t(atm_cell);

task new(integer id) {
this.id = ig;
b

task main_t(} ¢
atm_cell cell;

repeat (100) {
cell = new;
vold = cell.randomize () ;
post_cell_gen_t(cell)

I

}

extend atm_gen {
bfm: utopia_ri1 is instance;

post_cell_gen{cell: atm cell) @
is alsc { —osHl) Geys.any

, me.bfm.send (cell);
}i

unit random_thb {
th : harness is instance;
gen(4]: list of atm _gen is instance:
keep for each in gen { '
J:.t.id == index:;
it.bfm == value(th.atm_port{index])

7

}:
T

of the simulation (such as the number of objects to generate) or
externally triggered by the testbench. Sample 6-38 shows a genera-
tor t'hat, by default, will generate the maximum number of objects
It will also not start immediately, leaving time for the testbench to.
c.onﬁgure the device. The generator also can be suspended at any-
time by turning the run event OFF, Sample 6-39 shows how a
debug testcase can constrain the generator to generate a single cell
on a randomly selected port and no cells on the others,
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Sample 6-38.
Random gen-
erator with ter-
mination
mechanisms

Sample 6-39.
Debugtestcase
injecting a sin-
gle cell on ran-
dom port

Adding con-
straints is hard.

class atm_gen {
integer id;
event run;
integer cell count;

virtual task post_cell_gen t(atm_cell);

task new(integer id)

{

this.id = id;
this.cell count = -1;
trigger (OFF, this.run):

}

task main_t(} {
atm_cell cell;

while (this.cell_count != 0) {
sync{ALL, this.run);
cell = new;
vold = cell.randomize(};
post_cell_gen_t{cell);
this.cell count--;
}
}
}
extend sys {
the_one: uint (bits: 2);
Y
extend atm_gen {
keep this.id == sys.the_one => cell count == 1;
keep this.id != sys.the_one =» cell_count == 1;

}i

What if a testcase requires that a stream of cells with the same VPI
value be injected? Or that only write cycles within a narrow address
range be generated? Or samples with negative values? Or no branch
instructions? Adding constraints to the simple generator shown in
Sample 6-38 requires that the entire generation method be replaced,
as shown in Sample 6-40. This results in a lot of duplicated code
and a methedology similar to using directed stimulus. As illustrated
in Figure 6-13, a different random generator would be created for
each testcase. The idea behind the HVL productivity cycle depicted
in Figure 2-17 is to write just one generator that can be steered
toward the uncovered functional coverage points by adding con-
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straints with as little modification:

§ as possible, as illustrated in

Figure 6-14.
Sample 640 extend atm _gen {
Replacing.ran- main() @sys. any is only {
c!om genera. var cell: atm cell;
tion method :
: whl‘le {me.cell_count 1= o) {
if (lme.run) {
; walt cycle ggo;
gen_ cell keeping {
} it.vpi == 8-hoo;
me.pest_cell_gen (cell);
me.cell count--;
¥
I
P
Figure 6-13.
Different
random Bus Functio » i
nal ——# Des
generators ’ Model <> Vell'lgfrilcgtlilgr?r
Figure 6-14.
Constraining a Random . Bus Functi i
. | ctional [ Des
single randem Generator Model PEN Ve;igigilcgtlilgr? ’
generator 1
Constraints
Adding Constraints in e

You can add con-
straints to the gen-
erated type,

Writine Testhenchec: Frmotineal $._tor ..

'Ih§ s1mple§t mechanism for adding constraints is to add them to
the typfa being generated. For example, the constraint forcing the
generation of a stream of ATM cells with a VPI value equal to g can
be addfad to .the ATM cell type as shown in Sample 6-41. The prob-
%em with this approach is that the constraint will appiy to gve

1n§t@ce of the object in the entire simulation. If the objective w;y
to inject a specific condition on one specific stream, or use a diffe y
ent constraint on a different stream, this approach u;ill not work )

Aw—— =
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Sample 6-41.
Adding con-
straints to the
generated type

Always generate
fields.

Sample 6-42.
Generating a
field instead of
a variable

Sample 6-43.
Adding con-
straints to the
generated field

Use unigue identi-
fier to enable
stream-specific
constraints,

Do not add con-
straints to the har-
ness.

extend atm_cell { . extend atm_gén ;
keep vpi == 87h00; ifgg{ﬁeﬁ-ﬂ. keep me.id == 0 =» me.cell.vpi == 8'h00:
b stream%spe— keep soft me.id == 3 =» '
i cific constraint e i?léﬁ{;;?bad == select {
. . . . . 1 9: FALSE;
The problem with the simple generator is that it uses a variable to i }s
generate data items. You can only add constraints to fields, not vari- i };

ables. By generating a field instead of a variable, as shown in Sam-
ple 6-42, you can add constraints limited to the generated instance, scope. They only apply if the generation is triggered from a level at
not all instances of the object. Sample 6-43 shows how the con- or above the level they are specified. In the case of the generator

straint on the VPI value can be added to this new version of the cell is generated by the gen action of a field in the genegrator itse,lfa
generator. q That is in a lower scope that the constraints in Sample 6-45 whicli
are at the hamness level. Therefore, the constraints will ’not be
applied. The constraints in Sample 6-44 are at the same scope level
as the generated field and thus will apply. The constraints in Sample

6-45 will only apply when the harness itself is generated.

unit atm gen {
‘leell: atm_cell;

main() @sys.any is {
while (me.cell_count != 0) {

exténd harness {

Sample 6-45. keep gen[0) +cell.vpl == 8'h0Q;

Invalid con-

en me.cell; : keep soft gen[3]. P ‘-
r?\e.post_cell_gen (me.cell): straint scope 1: TRUE? [31.cell.is_bad == select {
- 9: FALSE;
¥i }i
Y bi

bi .
§:fgjmmwo . Consltl:amts are powerful, but sometimes cannot express a particular
extend atm_gen { post_generatef). a5 condition that needs to be generated. You can execute procedural
» needed. code before or after the generation process by extending the pre-

keep me.cell.vpi == 87h00; !
: defined pre_generate() and post_generate() methods. You could

use pre_generate() to initialize some non-generated fields or use
post_generate() to compute or corrupt CRC values, as illustrated in
Sample 6-46. CRC values should always be computed in the
post_generate() method to ensure that they are computed last

based on the final value of all the covered fields. Using a constrainE
to set a CRC field can yield the wrong value if the generation order
causes the CRC value to be generated early.

}i

The constraint in Sample 6-43 still applies to all instances of the
generator. To specify a constraint for a single instance, use a condi-
tional expression that involves a unique identifier for that instance.
As shown in Sample 6-44, the field id can be used to express a
stream-specific constraint. As long as this field is set appropriately,
as in Sample 6-37, each generator will use a different set of con-

straints.

You may be tempted to add stream-specific constraints by referring
to the appropriate generator instance in the test harness, as shown in
Sample 6-45. This technigue will not work! Constraints have a
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Sample 6-46.

Corrupting
CRC value

extend atm_cell {
is_bad: bool;
post_generate() is also {
if {is_bad) {
gen me.crc keeping {
it != me.crc;

i

Adding Constraints in OpenVera

You can add con-
straints to the ran-
domized type.

Sample 6-47.

Adding con-
straints to the
generated
class

You can turn con-
straints ON and
OFE.

Always random-
ize a public prop-
erty.

The simplest mechanism for adding constraints is to add them to
the class being randomized. For example, the constraint forcing the
generation of a stream of ATM cells with a VPI value equal to 0 can
be added to the ATM cell class as shown in Sample 6-47. The prob-
lem with this approach is that the constraint will apply to every
instance of the object in all future simulations and models. If the
objective was to inject a specific condition for a-specific testcase or
simulation, this approach will not work.

class atm_cell {
constraint vpi_is_0 {
vpi == 87h00;

b
}

if a constraint is not supposed to apply at all times, it should be
turned OFF in the constructor. It can then be turned ON only when
required. For example, the constraint added to the ATM cell class
Sample 6-47 is turned OFF in Sample 6-48. The constraint will
only apply to a randomized instance only if it is explicitly turned
ON.

The problem with the simple generator is that it randomizes a vari-
able to generate data iterns. The variable is not visible externally to
allow the testcase to turn the relevant constraint blocks ON. By ran-
domizing a public property instead of a variable, as shown in Sam-
ple 6-49, you can control the constraints in the randomized instance
as shown in Sample 6-50. For a constraint to apply to a single

360

‘Writing Testbenches: Functional Verification of HDL Models

Random Stimulus

class atm_cell {

Sample 6-48.

Adding con- o v .
straints turned COHSt_Famt Ypl_ls“o {
OFFby ) vPil == 8'h00;
default

task new() {

} this.constraint_mode(OFF, "vpi_is_0*);
}

stream, turn the relevant constraint block in th

: e randomized prop-
erty for the generator instance of that stream, PP

Sample 6-49. class atm gen
Randomizing .
a public prop- atm cell cell;
:riya;ir;%tﬁad of task main_t() {
) while {this. cell _count != 0) {
this.cell = new;
VO.'li.d = this.cell.randomize();
this.post_cell_gen_ t(this. cell);
}
}
}
Samp]e 6-50, pProgram corner_case
Controlling
constraints in random_th th = new;
randomized i
instance void = th.gen[0].cell. constraint_mode (ON,
”Vpi_iS_O") ;
}
i:zlewlzzss Z::om- Thc:,ire is_ s‘till a pr.oblem with the generator in Sample 6-49: It keeps
e randomizing a different instance. The randomized instance keeps

changing and must be controlled as shown Sample 6-50 before each
:dnd exfery ra.mdonnzation. That’s too much work, Instead, random-
1z¢ a single instance whose value is then copied into a new instance

These new instances will create th
. e stream of generated i
as shown in Sample 6-51. : dita fems,

Writing Testbenches: Functinnal Verificatinm af LTAT A 3.1- o
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Sample 6-51.
Randomizing
a single
instance

Add constraints to
a derived class.

Sample 6-52.

Adding con-
straints in a
derived class

Replace the ran-
domized instance
with an instance of
the derived class.

class atm_gen {
atm cell cell;

task new {

this.cell = new();

¥

task main_t() {
while (this.cell_count != 0) {

atm_cell new cell;

void = this.cell.randomize();
new _cell = this.cell.copyl(};
this.post_cell_gen_t(new_cell);

}

The constraint in Sample 6-48 was added to the original class mod-
eling the ATM cell. If all of the constraints required to generate all
of the input conditions to meet your coverage ‘goals are added to
that one class, it will soon become unmanageable. Furthermore, a
generic object model, such as an ATM cell, can be reused across
projects. It should not be polluted with project or testcase-specific
additions. Constraints should be added in a derived class as shown
in Sample 6-52. Use a different extension for each testcase.

class constrained_atm cell extends atm_cell {
constraint vpi_is_0 {
vpi == 8'h00;
¥

task new() {

this.constraint_mode (OFF, “vpi_is_07};

}
}

This technique does not appear to be helpful, as the generator is still
making use of the base class, not the derived class. Therefore the
new constraints are not used. One solution would be to change the
generator to use an instance of the derived class, but you'll end-up
modifying the generator for each constraint set. Remember that a
derived class is compatible with its base class and that the random-
ize() method is a virtual method. We can simply sneak an instance

167,
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Sample 6-53.
Adding con-
straints via a
derived class.

Extend
pre_randomize()
or
post_randomize(),
as needed.

of the derived class in lieu of the original randomized instance, and
the generator won’t even be aware that it is now generating a data
stream subject to additional constraints! Sample 6-53 shows how to
do so for a specific instance of a generator.

class constrained_atm_cell extends atm_cell {
constraint vpi_is_0 { a
vpl == 8'h00;

}
}
Program corner_cage
{
random_th th = new;
{
constrained_atm_cell cell = new;
th.geni0].cell = cell;
}

'

Con;s.tljaints are powerful, but sometimes cannot express a particular
condition that needs to be generated. You can execute procedural
code before or after the randomization process by extending the
predefined pre_randomize() and post_randomize() methods. Yon
could use pre_randomize() to initialize some non-randomized fields
or use posi_randomize() to compute or corrupt CRC values, as
iliustrated in Sample 6-54. CRC values must be computed in,the
pos:l,‘_randomize() method because methods cannot be used in con-
straint expressions. When overloading the pre_randomize() or
past?_ram.iomize() methods, do not forget to invoke their original
version in the parent class using Superpre_randomize() or
superpost_randomize(). This approach will ensure that any proce-

f.iural operations required to randomize the parent class successfully
1s executed,

Writineg Testhenchee: Fiineatinnal Vawfianiae £ remr s r
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Sample 6-54.

Corrupted
CRC value

class may _be_bad_atm_cell extends atm_cell {
bit is_bad;
task post_randomize() ({
super.post_randomize() ;
if (is_bad) {
bit [7:0] crc = random{);
while (crc == this.crc) ({
crc = random();

}

Constraining Sequences

Generating atomic
elements is not
interesting.

Provide a unique
data item identi-
fier.

Generate a list in ¢.

In the previous section, data items were generated randomly inde-
pendent of each other. This technique is going to create some inter-
esting conditions but is unlikely to generate all of the conditions
required to meet your functional coverage goals. The design verifi-
cation has data and temporal behavior, each of which must be veri-
fied. The temporal properties of applied stimuli must be as flexible
and diverse as the data properties to verify the temporal behavior
easily. You must include a mechanism that will make it possible to
express constraints describing a sequence of data items that will
exercise the temporal features of the design.

It is possible to express stream-specific constraints using a vnique
stream identifier in a conditional expression, The same mechanism
can be used to specify constraints applicable to data items at a spe-
cific index within a sequence. The random generator from Sample
6-42 has been modified in Sample 6-55 to increment an object
index after each random generation. Constraints specific to the
position of the object within the sequence can then be specified
using that unique object identifier, as shown in Sample 6-56.

Using a unique object identifier allows specifying sequence-spe-
cific constraints. But they can be specified only as independent val-
ues. It is not possible to express constraints that refer to previously
generated values. For example, how would you generate a sequence
of ATM cells with random VPI values with no two consecutive
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Sample 6-55.
Generating
constrainable
sequences

Sample 6-56.
Specifying
sequence-spe-
cific con-
straints

Sample 6-37,
Generating
sequences
using a list

unit atm_gen {

Icell idx: uing;
tcell: atm_cell;

main() @sys.any is {
while (me.cell_count = 0y ¢

gen me.cell;
me.post_cell_gen (me. cell);

me.cell_idx += 1

’

extend atm_gen {
keep vpi == cell_idx % 4;

H

1<_ientlcal yalues? In e, the solution is to generate a list instead of

smglfz Objﬁ.Ct. List constraints can refer to any previous elements n
the list using the prev or index implicit variables, Sample 6—5117l
shows the previous generator, modified to generate 2 Jist ilfstead of

a single object. Note how a soft COnstr;

aint is used to generate a sin-
gle element by default, Sample 6-58 shows how to add constraints

to avoid generating two identical consecutive VPT valyes.

unit atm gen {

'cells: ligt of atm_cell;
keep soft cell.size(}

main () @sys.any is {
while (me.cell count = 0) |

gen me.cells;

me.post_cell gen {me.cells);

X me.cell_idx 4= me.cells.gize();
};

}i

——
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Sample 6-58.

Specifying
sequence-spe-
cific list con-
straints

Keep a list of pre-
viously generated
values in Open-
Vera.

Sample 6-59.

Referring to
previously
generated val-
ues in
sequence con-
straints

Define a sequence
for debug testcase.

extend atm_gen {
keep cells.size() .reset_soft();

keep for each in cells { .
index > 0 =» it.vpil != prev.vpi;
Y
}i

OpenVera does not support list constraints. But you can k_eep a copy
of all previously generated objects in the sequence in a list that you
are then free to refer to in constraints. Sample 6-59 shows how
sequence constraints based on previously generated values can be
added to the generator in Sample 6-51.

class constrained_atm_cell extends atm _cell {
integer cell_idx = 0;
atm_cell prev([];

constraint no_two_same_vpi {
if {cell_idx = 0} { .
vpi != previcell _idx-1].vpi;
}
}

task post_randomize() {
super.post_randomize () ;

this.previthis.cell_idx++] = this.copv{);

¥

During a consulting engagement, I had spent several days helping a
customer write a random-based self-checking environment to.venfy
a CPU interface on an RTI. design. After explaining and imple-
menting the concepts shown in this section, the ,engineer I was
working with interjected, “But the first testcase I'll want to run,
when the RTL is delivered tomorrow, is a simple write foﬂoweq by
a read. I don’t need this fancy generation and constraint rpechamsm
vet.” I replied that his first testcase was simply a very simple sce-
nario: Constrain the sequence of transactions to a length of_ two, the
first transaction to be a write cycle and the second transaction to be
a read cycle at the same address as the prc\.rious one. Instez.ld of
writing a separate testcase, only a few addin?n.a.l lines creating a
simple sequence were sofficient. Once the initial de‘t?ug.of the
design was over, these constraints were removec'L subjectn.lg the
RTL. code to a lot of different input sequences with no additional
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Sample 6-60.

Defining a
first-test
sequence

Need to define
muttiple
sequences.

Define scenarios
to increase func-
tional coverage.

Scenarios can
define directed
testcases.

testbench development effort. The sequence constraints can be
found in Sample 6-60.

extend transaction_gen {

keep transactions.size() == 2;

keep fér each in transactions {
index == => it.kind == WRITE;
index == 1 =» it.kind == READ and

it.address == prev.address H

ri
};

The sequences defined using the constraint mechanism shown in
this section would be generated only once per simulation and each
simulation would generate only one sequence per generator. It is
more efficient to have multiple interesting sequences—-or scenar-
ios—be generated randomly, one after another in a single simula-
tion, Different instances of the same generator could generate the
same scenario at the same time or generate different scenarios,

Left unconstrained, random generators will generate valid but most
likely uninteresting input sequences. By defining scenarios, genera-
tors will be constrained to generate a series of constrained
sequences, focused on interesting cases. One scenario is usually the
“random” scenario i.e., no constraints at all. As holes in functional
coverage are identified, scenarios are added to the verification envi-
ronment to steer the generators toward the uncovered areas of the
solution space.

If you have the necessary control variables, it is possible to specify
a directed testcase as a series of constraints. By specifying a set of
constraints for which there is only one solution, you have created a
scenario that implements a directed testcase,

Defining Scenarios in OpenVera

Use the stream
generator.

Scenarios are best described using the stream generator. A streamn
generator ruleset is defined using the randseq sequential statement.
A scenario is described as a production rule, often making use of
other production rules. Thus scenarios can be described in terms of
other scenarios. A second type of production rule describes a
weighted choice between equivalent scenarios. For someone with
an RTL background, the reverse-YACC' syntax of the stream gener-

Writino Tecthanrhao: Thirmnatiaeal TTot0 e
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A production rule
is like a task defi-
nition.

Sample 6-61.

Stream gener-
ator ruleset

The choice
weights can be
expressions.

Do not create ran-
dom-length
sequences using
recursive rules.

ator is really bizarre. But once you realize it is a simple front-end to
small subprograms and the rendcase statement, it becomes easy to
understand.

A production rnle is similar to defining a small task or function.
When invoked, it will “execute” its definition. For example, the
ruleset in Sample 6-61 is functicnally equivalent to defining the
tasks in Sample 6-62. A rule can return values and be passed argu-
ments. Refer to chapter 12 of the OpenVera User’s Manual for a
complete description of the stream generator. '

randseqg (SCENARIOS) {
SCENARIQS: (&1} RANDOM CELL
| (&1} TEN_WITH_SAME_VPI;

RANDOM_CELL: {
atm cell cell;
void = this.cell.randomize();
cell = this.cell.copy():
this.post_cell_gen_t(cell);

}

TEN_WITH SAME VPI:
RANDOM_CELL {

void = this.cell.rand_mode (OFF, “vpi”);
} <repeat (9) RANDOM_CELL> {
void = this.cell.rand_mode (ON, *vpi”);

}
}

The weights assigned to the different choices in an alternative rule
can be expressions, just like the weights in the equivalent randcase
statement. By making these weights public properties of the genera-
tor object, each simulation run can pick and choose which scenarios
will be enabled and the probability a particular scenario will be
generated. For example, in Sample 6-63, the simulation run will
only use the “debug testcase” scenario in the generator shown in
Sample 6-64.

Rules can be recursive. For example, Sample 6-65 shows a ruleset
that creates a sequence of ATM cells. The number of cells in the
sequence is random, determined by the number of times the
CELL_STREAM rule is selected over the RANDOM_CELL rule.
This style works just fine except for one thing: The length of the
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Sample 6-62.
Equivalent
task defini-
tions

Sample 6-63.
Selecting sce-
narios

Sample 6-64.
Variable
weight sce-
nario selection

task SCENARIOS()

}

randcase {

{

1: F.ANDOM_CELL() H
l: TEN_WITH_ SAME_VPI();

task RANDOM_CELL{)
atm_cell cell;
void = this.cell.randomize {);:
cell = this.cell .copy () ;
this.pos t_cell_gen_t(cell);

}

RANDOM_CELL () ;

void = this.cell.rand_mode(OFF, "ypi©);

repeat {9) {

{

task TEN_WITH_SAME_VPI (r {

’

RANDCM_CELL(} ;

};

vold = this.cell.rand _mode {ON, “vpir);

Y

program initial_debug ¢

random_harness th = new;
th.trans_gen.null_weight = 0;

class transaction_gen {

transaction trans:

integer null_weight = 1:

integer debug_weight = 1

task main_t ()

while (...}

{

{

’

randseq (SCENARIOS) ¢

SCENARIQS:

(&null_weight) NULL
I (&debug_weight) DBG_TST;

Writine Tecthanrhaoo: Timntiamal 7.t .
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Sample 6-65.

Recursive
ruleset

Generate the
length first, then
generate the
sequence.

Rulesets and rules
cannot be virtual.

sequence is not distributed evenly. The probability that the length of
the sequence is 1 is 10%. The probability that it is 2 is 9% (0.9).
The probability that it is 3 is 8.1% (0.1 x 0.9 x 0.9 x 0.1). The prob-

ability that it is N is 0.9"/10. Furthermore, the length of the
sequence cannot be constrained other than by playing with the
selection weights.

CELL_STREAM: (&S0) CELL_STREAM RANDOM CELL
| (&10)} RANDOM_CELL;

RANDCM_CELL:
atm_cell cell;
void = this.cell.randomize();
cell = this.cell.ceopy():
this.post_cell_gen_t(cell);

}

A better approach is to generate the length of the sequence first.
That value can be subjected to constraints and have an even distri-
bution. Once the length of the sequence is decided, you generate the
sequence using a repeat statement. Notice how Sample 6-66 encap-

- sulates the randomized scalar sequence length value into a class. Tt

simply makes it possible to generate its value using randomize()
and subject it to constraints, Had random() been used, it would not
have been possible to constrain the generated value using any of the
techniques shown in this section.

An important limitation of the stream generator is that production
rules and entire rulesets cannot be virtual. It is not possible to
extend an existing generator using a stream generator ruleset with-
out modifying its source code. If you want to be able to add new
production rules or modify existing rules or entire rulesets, I sug-
gest you use the equivalent subprogram style, as shown in Sample
6-62. If each task or function is defined as virtual, it will be simple
to extend a ruleset by creating a derived generator class. Virtual
tasks and functions can still make use of the stream generator and
the randseq statement to describe their respective scenarios.
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Sample 6-66.
Generating
variable-
length
sequences

class seq length ¢
integer value;
constraint valid {
valus = 0;
}
constraint reasonable {
value < 50;
}
}

class atm_gen {
seq_length len;

task main_t{) {
randseq (...} {
CELL_STREAM: {

void = this.len.randomize() ;
} <repeat {(this.len.value) RANDOM_CELL=;

Defining Scenarios in e

Generate a struct
containing a list of
objects and a kind,

Define a new sce-
nario using a when
extension.

To be able to generate multiple scenarios one after the other. it is
nhecessary to generate multiple lists of objects, one after am;ther
Eacfh generated list defines a scenario. The generator in Sample 6:
571is .modiﬁed in Sample 6-67 to generate a struct containing a list
of objects instead of a list. Fields unique to the generator instance
a'nd the scenario instance are also included to enable the specifica-
tion of stream-specific or scenario-order-specific constraints.

The default random scenario simply generates a random-length list
of random cells. To create new scenarios representing interesting
sequences of object instances, add a new enumeral to the enumer-
ateq typfa identifying the scenario then specify the scenario con-
straints in a when extension of the scenario struct, as shown in
Sample 6-68. The scenario becomes available to ail instances of the

fenerator by simply loading the file containing the scenario defini-
ion.
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Sample 6-67.
Generating
scenarios

Sample 6-68.

Defining new
scenarios

Testcases can con-
strain the scenario
selection.

type atm_sgscenario_kind: [RANDOM];

struct atm_scenario {
stream_id : uint;
scenario_id: uint;
kind : atm_scenario_kind;
cells ligt of atm cells;

Y
unit atm _gen {
scenario: atm_scenario;

main(} @sys.any is {

while (...) {
gen me.scenario keeping {
it.stream_id == me.id;
it.scenarioc_id == me.scenario_count;

Y

for each in me.scenario.cells {
me.post_cell_gen(it):
T

me.scenario_count += 1;

extend atm_scenario_kind: [SAME_VPI];

extend SAME_VPI atm_scenario {
keep cells.size{) > 1;
keep for each in cells {
index > 0 =» it.vpl == prev.vpi;
}i
}i

Using the unique stream and scenario identifiers, a particular
testcase can select specific scenarios to be generated by specific
generators at a specific time. For example, Sample 6-69 is a
testcase that applies random background traffic to ports 1 through 3
but sequences of 10 identical VPI values on port #( after 10 random

cells.

Random Stimulus

Sample 6-69,
Selecting sce-
narios

Use sequences
from the eRM
toolkit.

extend atm scenaric {
keep soft kind == RANDOM;
keep'strealp == 0 && scenario_id s-= 10 =»
. kind == SAME_VPI and cells.size() == 10;

The scena‘rio generation mechanism shown in Sample 6-67 works
well for simple scenatios. If hierarchical scenarios are required—
for example, to describe code structures where a “loop” scenario is

composed of a sub-scenario for the loop body®—use the sequence
mechanism described in Chapter 5 of the ¢ Reuse Methodolo
(eRM) peveloper Manual. The scenario generation mechanisgn{
:clutomatlcally creates generator declarations similar to those shown
in Sample 6-67. It also includes a mechanism for generating scenar-
10s one object at a time instead of using lists or generating them
procedurally instead of using constraints on lists.

3. And if that sub-scenario is also a “loop™ scenario, you get nested loops.
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SUMMARY

Encapsulate VHDL bus-functional procedures in a server entity.
Provide equivalent client access procedures in a package.

Create a transaction-layer test harness encapsulating all of the bus-
functional model instances and clock generators connected to the
design under verification.

Provide a high-level device configuration descriptor. Interpret the
descriptor value to configure the design under verification at the
beginning of the simulation.

Generate the device configuration randomly. Use functional cover-
age measurements to determine which configuration (or combina-
tion of configurations) has been verified. Use constraints to Hmit
configurations to currently supported or interesting valves and
combinations.

Make your testbench self-checking. Build the self-checking struc-
ture on top of the transaction-layer test harness.

Self-checking can be implemented using a reference model, by tag-
ging data, by using a transfer function with a scoreboard or any
combination of the above.

Generate directed stimulus by invoking the proper transaction-level
procedures directly.

When writing random generators, provide a constraint mechanism
that can described all of the interesting and relevant input
sequences.

Provide unique identifiers for each generator instance and data
instance to allow stream-specific and order-specific constraints to
be expressed.

‘Write random generators that generate random scenarios. Add sce-
narios to increase your functional and code coverage.

Directed and initial debug testcases can be described as tightly con-
strained random scenarios.
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CHAPTER 7

SIMULATION
MANAGEMENT

Simulation mast
be managed.

In “Revision Control” on page 68, I described how tools can help
manage source code. In “Issue Tracking” on page 74, I described
hqw Issues and bugs can be tracked to ensure they are resolved. In
this chapter, I address the simulation managernent issues. I describe
how to debug your testbenches efficiently using behavioral models.
then qverlooked but important topics, such as terminating your
simulation, reporting errors and determining success or failure are
covered. We also discuss configuration management: How do you
know you are simulating what you think you are simulating?

BEHAVIORAL MODELS

Testbenches
need a model to
be debugged.

Thj§ secti(.)n demonstrates how behavioral models can benefit a
de§1gn project. These benefits can be realized only if the model is
wittten with the proper perspective. This section also shows how to

model. exceptions properly and explains how to demonstrate a
behavioral model to be equivalent to an RTL model.

You have decided which testcases and functional coverage mea-
Surements are needed to verify a design functionally. Your best ver-
ification engineers are developing the test harness, self-checking
struct.ure and random-generators. Hardware design engineers are
working furiously on the RTL model, but it will not be available for
several weeks. Meanwhile, the test harness and verification envi-
ronment continue to be written. When all is said and done, the
amount of code written for the verification will surpass the amount
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Behavioral mod-
els are used to
debug testbenches.

of RTL code. You are looking at writing thousands of lines of code
without being able to debug them. Furthermore, when writing a
constrainable random environment, you need a model to exercise
your generators to ensure that they offer the constraint capabilities
required to generate interesting input scenarios.

What if someone walked up to you and offered you a model, avail-
able about at the same time as early versions of verification envi-
ronment can be simulated, that runs ope hundred times faster than
the RTL model and that looks and feels just like the real thing? You
could start debugging your verification environment even before
the RTL is ready. Because this model simulates faster, the debug
cycles would be shorter. By the time the RTL is available to simu-
late, you’d probably have most of the scenarios covering your
entire input functional coverage model defined and debugged. The
design schedule could be shortened and the verification would no
longer be squarely on the critical path. Sound too good to be true?
I’'m offering exactly such a model: It is called a behavioral model.

Behavioral versus Synthesizable Models

Behavioral mod-
els are not synthe-
sizable.

Behavioral code is
not just for test-
benches.

Many books, companies and individuals used the term behavioral
to describe a synthesizable model. This book uses the term differ-
ently. A model that can be translated automatically into a gate-level
implementation by a synthesis tool, such as Synopsys’ Design
Compiler, is called a Register-Transfer-Level or RTL model. It also
may be called a synthesizable model. This book uses the term
behavioral model to identify models that describe the black-box
functionality of a design. The Virtual Socket Interface Alliance uses
the term functional model.

In “Behavioral versus RTL Thinking” on page 121, I described the
characteristics of behavioral code compared with synthesizeable
code. Using behavioral descriptions for testbenches is acceptable
easily by most design engineers. After all, the testbench will never
be implemented in hardware so they never give any thought as to
how they would go about it. Their mind hasn’t been influenced by
an implementation architecture or by a synthesizeable description
of the testbench’s functionality. They are still open to describing
this functionality using behavioral code.

376

Writing Testbenches: Functional Verification of HDI. Models

Behavioral Models

i\zfrrz:ln;goz eblehav- Writing a truly behavioral model of a design requires a greater men-
rommites  diffr. t.:il legp. Tfou may have already started to think of a design’s func-
eat mindset ther, :uonahty 1z tefms of state machines, datapaths, operators, memory
writing an RTL interfaces and other implementation details. This mindset can be
model. : cre_ated simply because the functional specification document was
witten with these implementation details in mind. To write a
proper behavioral model, you have to focus on the Junctionality, not
the implementation. If the implementation starts to color your

thinking, you’ll simply write what I call an “RTL++” model.

Example of Behavioral Modeling

iZL;Z ;1103:315. For exar_nple, consider the specification in Sample 7-1. How would

ablz usinsz BEZLZ_@- you wntef a behavioral description of this functionality? Most

fotal synthesis, would ‘fvnte something similar to the description shown in Sample
7—2..Tlus description clearly is not synthesizeable using logic syn-
.thesm tools. However, it happens to be synthesizeable using behav-
101':11 sy_nthesis tools such as Synopsys’ Behavioral Compiler. The
d§s1gn 1s synthesizeable behaviorally because the description was
tainted by the specification: There is an implicit state machine and
everyghing happens at the active edge of the clock.

Sample 7-1. The debounce ci'rcuit samples the input at every clock cycle. The
Specification debounced version of the input changes state only when eight

of a debounce  consecutive samples of the input have the same poiarity.
circnit ‘

reg dekounced;

always @ (posedge clk)

begin: debounce
if (bouncing !- debounced} begin

repeat (7) begin

@ (posedge clk);

if (bouncing == debounced)
disable debounce;

Sample 7-2,
RTL++
description of
debounce cir-
cuit

end
debounced <= bouncing:
end
end
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A behavioral
model cannot be
refined into a syn-
thesizeable model.

Sample 7-3.

Behavioral
description of
debounce cir-
cuitry in Ver-
ilog

Sample 7-4.

Behavioral
description of
debounce cir-
cuitry in
VHDL

Delays cannot be
synthesized.

‘The objective of a behavioral model is to represent the functionality

of a design faithfully, in a way that is easy to '?v.ritc‘and simu_lat(?.
The behavioral model is designed to help verification, and 1_nd1-
rectly, the implementation. When written properly, a behawor?l
model cannot be refined into a model synthesizeable by today’s
logic synthesis tools.

For example, what is the functionality of the deboul}ce cirf:uitry
specified in Sample 7-17 It prevents pulses on the primary input,
narrower than 8 clock periods, from making it tq the dfabqunced
output. The functionality is similar to a buffer lw1th a.31gmﬁcant
inertial delay. This behavior can be modeled using a single state-
ment in both Verilog and VHDL, as shown in Samplve 7-3 and Sam-
ple 7-4, respectively. These statements use the inemal‘ delay mc?del
built in each language. If required, please refer to a suitable Verilog

or VHDL reference book! for a detailed description of inertial
delays.

assign #(8*%cycle) debounced = bouncing;

debounce: debounced <= bouncing after 8 * cycle;

The descriptions in Sample 7-3 and Sample 7:—4 are far .fron? be1¥1g
synthesizeable. It is not possible to synthfamze‘ a specific inertial
delay. The other limitation of these descriptions is the need to knqw
the clock period. It could be specified using a constar_zt, a generic,
or a parameter, but the behavioral model would not adjust tc.> d%ffer—
ent clock periods as the real implementation would, If th1.s is an
important requirement, the clock period could be determined at

1. Titles have been suggested in the Preface on page xxii.
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Sample 7-5.

Measuring the
clock period in

the debounce
circuitry

runtime by sampling two consecutive edges. Sample 7-5 shows
how this sampling could be performed. Notice how the clock cycle
is measured only once to improve simulation performance. It is
unlikely that the clock period will change significantly during a
simulation. Computing the clock period at every clock cycle simply

would consume simulation resources without accomplishing addi-
tional work,

architecture beh of debounce is

signal cycle: time ;= § * 10 ns;
begin
process
variable stamp: time;
begin
wait until clk = '1°;
gstamp := now;
wait until eclk = 17,
cycle <= now - gtamp;
wait;

end process;

debounced <= bouncing after 8 =* cycle;
end beh;

Characteristics of a Behavioral Model

They are parti-
tioned for mainte-
nance.

They do not use a
clock.

A behavioral model is partitioned differently from a synthesizeable
model. The latter is partitioned to help the synthesis process. Parti-
tioning is decided along implementation lines, producing a design
with several instances arranged in a wide and shailow structure.

Behavioral models are partitioned according to generally accepted
software engineering practices. Behavioral modeis tend to be parti-
tioned according to main functional boundaries to avoid maintain-
ing one large file, or to allow more than one author to write it.
Duplication of function in g model, such as many interfaces of the
same type, is also implemented using multiple instances of a single
description. Behavioral models tend to have very few instances cre-
ating a narrow and shallow structure of large blocks.

A clock signal is an implementation artifice for synchronous design
methodologies. These methodologies are functionally irrelevant, A
behavioral model does not change state synchronously with a clock.,
Instead, a behavioral model uses many different synchronization
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Behavioral mod-
els do not use
FSMs.

mechanisms—one of which could be a clock edge., While an RTL
model] continuously recomputes and updates the value of inferred
registers, a behavioral model performs computations only when
necessary.

Consider the RTL model in Sample 4-3 on page 124: The process
labeled SEQ is executed every time the clock changes. The signal
named STATE is assigned at every rising edge of the clock signal,
regardless of the value of NEXT STATE.

The equivalent behavioral model in Sample 4-4 on page 124, on the
other hand, does not even use a clock. Instead, it acts on the only
functionally significant event: the change in ACK. This behavioral
model changes the cnly functionally significant state, the state of
the REQ output.

A clock would be used only when data needs to be sampled or pro-
duced synchronously with a clock signal. Examples of synchronous
interfaces include PCI or Utopia Level 1. The clock signals for syn-
chronous interfaces are usually externally generated and are not
used any further by the behavioral model.

Synthesizeable models are littered with finite state machines. They
are the primary synchronous design mechanism for implementing
control algorithms. When writing software using a language like
C++, you would not usually implement it as a series of cooperating
finite state machines. The language does not lend itself very well to
that.

Instead, the control algorithm and the data transformations would
be part of the control flow of the program. The model’s state would
depend on the current valves of the variables and the location of the
statement under execution in the program sequence.

Behavioral models follow a similar strategy. Consider the example
in Sample 4-3 on page 124. The state of the RTL model is deter-
mined by the value of the state register and the current input values.
The same code is executed over and over. On the other hand, the
state of the behavioral model shown in Sample 4-4 on page 124
depends only on which wait statement is being executed currently.
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Datacanremainat  The skills of the hardware engineer reside in mapping a complex
:bh:t%:;ie::l of functionality into the very primitive resources available in hard-
: ware. Everything must be implemented using a binary value, with a
small number of bits, and reduced to integer arithmetic. A behav-
ioral model can make use of the high-level data types provided by
the language, such as enumerals, floating-point numbers, records
and multi-dimensional arrays. The section titled “Data Abstraction”
on page 145 illustrates many examples of using high-level data
abstraction instead of using representations suitable for implemen-
tation,

Dat.a structuresare  In a synthesizeable model, the format of the data structures are

g;iif:e:ot;o; meﬂf:_- organized to make implementation possible. For example, imagine

mentation. P that a routing table in a packet router is composed logically of 256-
bit records with various fields. The router is specified to support
1,024 possible routes and the table is maintained by an external pro-
cessor through a 16-bit wide interface.

The physical implementation of the routing table is likely to use a
16-bit RAM with 16K locations. Whenever the routing engine per-
forms a table lookup, it has to read a block of 16 words to build the
entire 256-bit routing record.

If the table maintenance via the CPU interface has a much lower
frequency than packet routing, a behavioral model would instead
optimize the data structure for the table look-up and routing opera-
tion. The routing table would be implemented using an array of
records with 1,024 locations. Tt would also probably use a sparse
array implementation to minimize memory usage as well. The table
would lock the same from the CPU’s perspective, with each 16-bit
access being performed at the right offset within the record identi-
fied by the upper 10 bits of addresses. Sample 7-6 shows a Verilog
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Sample 7-6.

Mapping a
NAarrow access
in a wide data
structure

Their interfaces
are implemented
using bus-func-
tional medels.

Figure 7-1.

Structure of a
UART test
harness and
behavioral
model

Behavioral mod-
els can be written
using HVLs.

implementation of the CPU access into the routing table of the
behavioral model.

reg [255:0] table [0:1023];

always
begin: cpu_access
reg [255:0] entry;

entry = tablel[addr[l13:4]];
if {read) data = entry => addr([3:0];
else begin
for (i = 0; 1 <« 16; 1 = i + 1) begin
entryladdr[3:0]*16+i] = datalil:
end
end

end

The testbench is a behavioral model of the environment. To make
implementation more efficient, Chapters 5 and 6 explained how
bus-functional models are used and located in a testcase-indepen-
dent test harness. The bus-functional models abstract data from the
physical level to a functional level where they are simpler to pro-
cess using behavioral code. :

The same strategy can be used when writing a behavioral model.
Bus-functional models are used for each interface around the
periphery of the model. Data is transformed behaviorally and
moved from bus-functional model to bus-functional model accord-
ing to the function of the device. And as Figure 7-1 shows, you will
likely be able to reuse the bus-functional models written for the
testbench in your behavioral model,

Beh Model

RS8232 Tx RS232 Rx

Mg
4-|+ RS232 Rx

h 4

r

CPU BFM PU Slavejq—p

RS8232 Tx

Transform

F 3

The use of HVLs is always depicted as a testbench interfacing with
the design under verification through the top-level interface. e or
OpenVera models can access HDL signals anywhere in the design
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Figure 7-2.

Using HVLs
for testbench
and
behavioral
model

Use an empty
module or archi-
tecture.

Modeling Reset

Reset is part of the
RTL coding style,

hierarchy. This feature is usually used to perform white-box verifi-
cation checks. But if HDL signals are not driven by HDL code, they
are free to be driven by HVL code, It is possible to write behavioral
models of arbitrary HDL blocks using HVLs, as illustrated in
Figure 7-2. Thus, behavioral models can be written using the high-
level constructs available in HVLs,

HDL harness -_l_l
HVL Testbench N P»U V HVL Beh
:]_____4___ _____ - Mode
[P -F-- - - - - 4

To be able to interface the behavioral model transparently with
other HDL models, encapsulate the HVL model in an empty Ver-
ilog module or VHDL architecture. Use the same physical interface
as the RTL model. The HVL behavioral model would interface with
the signals inside the empty module or architecture. From the out-
side, the HDL simulator would have no knowledge that the inter-
nals of a particular instance are actually being driven by an external
simulation process.

Modeling exceptions can take of lot of time and introduce a lot of
intricacies in an otherwise simple algorithm description. When
writing a synthesizeable description, modelin g the effect of reset on
the state elements is defined in the supported coding style. For
example, Sample 7-7 shows how an asynchronous reset is modeled
to reset a finite state machine. Resetting an entire RTL model is
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Sample 7-7.
Modeling an
asynchronous
reset in RTL

Behavioral mod-
els must reset vari-
ables and
execution points.

Sample 7-8.

Behavioral
process to be
reset

In VHDL, check
for exceptions in
all wait statements.

accomplished by including the logic to handle the reset exception in
each process that infers a register.

process (clk, rst)
begin
if rst = "1’ then
state <= IDLE;
elsif clk’event and clk = "1’ then
case state is
end case;
end if;
end process;

As described in the previous section, the state of a behaviorz.ﬂ model
is not just composed of the values of the varigbles. It also 1n'cludes
the location of the statement currently being executed in .the
sequence of statements describing each con(:}ment execution
thread. To reset a behavioral model, you need not just reset the con-
tent of the variables. You must also reset the execution to a speC{flc
statement, usually at the top of the process. Flor examl?le, resettm_g
the process shown in Sample 7-8 would require resetting the vari-
ables and signal drivers to their initial values, as well as restarting
the execution of the process at the top.

process
variable count: integer
begin
strobe <= '07';
wait until go;
while (go) loop

n
o

count := count + 1;
wait on sync;
end loop;

strobe <= '1';
wait for 10 ns:
strche <= '0°7;
walt until ack = ‘17;
count := 0;

end process;

Processes in VHDL can be affected by other processes only
through signals. For a process to be reset, it has Fo monitor a rcget
signal, then take the appropriate action once reset is detected. A sin-
gle reset signal of type boolean is sufficient. It would be set to true
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Sample 7-9.
Behavioral
process with
poor reset
detection and
handling

In VHDL, embed
the process body
in a loop state-
ment. )

by a reset control process whenever a valid reset condition from
any number of sources—such has a hardware, power-up or soft-
ware reset—is detected.

Using a boolean type avoids any misunderstanding about the active
level of reset. The activity level of a signal, either high or low, is an
implementation detail that we need not concern ourselves with
internally. Sample 7-9 shows the process from Sample 7-8 with
reset detection and handling, Pretty ugly and unmaintainable if you
ask me. An otherwise straightforward sequential description is
turned into a complex network of nested if statements.

process
variable count: integer :- 0;
begin
strobe <= ‘0,
wait until go or reset
if not reset then
while (go and not reset) loop

count := count + 1;
wait until sync’event or reset:
end loop:

if not reset then
strobe <= ‘1/;
wait until reset for 10 ns;
if not reset then
strobe <= ‘Q-;
wailt until ack = ’1’ op resget;
end if;
end if;
.end if;
count := 0:
end process;

In VHDL., the best way to reduce the clutter of nested control flow
statements is to embed the bedy of the Process into an infinite leop,
as shown in Sample 7-10. The loop iterates during normal opera-
tions but is exited whenever a reset condition is detected. The
impiicit loop around the Pprocess statement takes the execution of
the process back to the top where the initialization code is located,
Sample 7-11 shows the resettable process shown in Sample 7-9
with this new control structure. Each wait statement must still
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Sample 7-10.

Recom-
mended struc-
ture of a
behavioral
process with
reset detec-
tion and han-
dling

Sample 7-11.

A structured
behavioral
process with
reset detec-
tion and han-
dling

In Verilog, disable
all the blocks.

detect the reset condition, but the sequential description of the algo-
rithm remains almost untouched.

process
begin '
—-- Initialization
main: loop
-- Body of process

exit main when reset;

end lcop main;
end process;

process ‘
variable count: integer;
begin
main: loop
count := Q;

strobe <= ‘0°;

walt until go or reset;

exit main when reset;

while (go) loop
count := count + 1;
wait until svync’event or reset;
exit main when reset;

end loop;

strobe <= "1°;

wait until reset for 10 ns;

exit main when reset;

strobe <= 0°;

walt until ack = ‘1’ or reset;

exit main when reset;

end loop main;
end process;

Resetting a behavioral model in Verilog is easier and ml..lch _mo;e
elegant. When an exception is detected, all you need to do is disable
all the blocks in the model using the disable statement. The alvffays
blocks restart their execution from the top. Note that, as described
in “Disabled Scheduled Values” on page 220, pm_an(.img values
assigned using a nonblocking assignmen't may remain in t.he e,vlent
queue and clobber the reset state of a variable in some Verilog sim-

ulator.
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Replace initial
blocks with always
blocks.

Sample 7-12,
Behavioral
model in Ver-
ilog

Encapsulate the
disable statements
in a task,

Terminate sub-
threads in Open-
Vera,

Only the initial blocks present a difficulty. Since they only run once
in a simulation, they cannot be disabled since they are no longer
active, If they are still active, disabling them would simply make
them inactive immediately. To include initial blocks in the reset
handier, simply replace them with always blocks with an infinite
wait statement at the bottom. Sample 7-12 shows an original Ver-
ilog behavioral model. Sample 7-13 shows the same model, this

time with the proper handling of reset exceptions using the disabie
statemnent.

initial count = 0;
always
begin
strobe <= 1'hb0;
wait (go):
while (go} begin
count = count + 1;
@ sync;
end
sStrebe <= 1'b1;
#10;
strobe <= 1'b0;
wait (ack);
end

It is good practice to encapsulate all disable statements into a single
task to perform a reset of a Verilo g behavioral model, Multiple reset
sources and exception detection can call this task to petform the
reset operation, This technique also reduces maintenance to a single
location when always blocks are added or removed. The resef task
also can be called using a hierarchical name when a higher-level
module in a complex behavioral model needs to reset all its lower-
level components. This approach is more efficient than having to
assert a reset signal broadcast through the pins of all interfaces in
the model. Sample 7-14 shows the reset handier of Sample 7-13
modified to use a task to disable all of the blocks.

In OpenVera. define a reset event in each class. The reset event can
be triggered internaily when the reset condition is detected, or
externally by having the reset event manually triggered. When the
Teset event is triggered, abort all subthreads started in the class
using the terminate statement, as illustrated in Sample 7-15,
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Sample 7-13.

Behavioral
model with
reset detec-
tion and han-
dling

Sample 7-14.

Encapsulating
the disable
statements in a
task

In e, use the
rerun() method.

always

begin: init
count = 0;°
walit (0):

end

always
begin: main
strobe <= 1'b0;
wait (go);
while (ge) begin
count = count + 1;
@ sync;
end
strobe <= 1°'bl;
#10;
strobe <= 1'b0;
wait (ack);
end

always
begin
// Detect reset exception

dimable init;
disable main;
end

task reset;
begin
disable init;
disable main;
end
endtask

always
begin :
// Detect reset exception

reset;
end

In ¢, define a reset event in each unit. The reset event can be trig-
gered from an external HDL signal using a temporal expression or
manually triggered using the emir action. In an on block, call the
predefined rerun() method. If the unit instantiates sub-units, extend
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Sample 7-15,

Modeling reset

in OpenVera

Sample 7-16.
Modelingreset
in e.

Fhe remn().meﬂlod to trigger the reset event in each sub
nstance or invoke its rerun() method. Sam
ple.

class beh_model !
event reset;

slave_if cpu; -

task new() {

this.cpu = new(...);
fork

while (1) { // Reset detector

while (this.sigs.Sreset 1= 17b1) {

}
tr?gger(this.reset);
trlgger(this.cpu.reset);

while (1) { // Subthread starter

fork
join none
sync (ANY, this.reset) ;
terminate;

}

join none

T

unit beh_model ig {

event clk is rise(’(clk) ") @sim;

event reset is true(’ (rst) ' == 1'bl) @clk;

on reset {

me.rerun();
}:

cpu: slave if is instance;
ram: memory_if is instance;

rerun() is also {
emit cpu.reset;
ram.rerunf();

};

Writing Testhenchac: Brmatiama? $roia - . .- ——— e
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Writing Good Behavioral Models

Many attempts to
write behavioral
models fail.

Writing a good
behavioral model
requires special-
ized skills.

Focus on the rele-
vant functional
details,

At first glance,
latency seems a
significant charac-
teristic.

[ have seen and heard of many projects where the use of behavioral
models was attempted, but without producing much benefit over
RTL models. Often, the behavioral model was abandoned in favor
of the RTL model as soon as the latter became available. The
behavioral model failed to exhibit any the benefits outlined in “The
Benefits of Behavioral Models” on page 393.

Further investigation into those failed attempts usually reveals that
the behavioral model was written by experienced hardware design-
ers. Unfortunately, their valuable skills were not appropriate to
writing good behavioral models. Their level of thinking was still
too close to the implementation and they had difficulty thinking in
terms of higher levels of abstraction. Very often, there was the
implicit intent of refining the behavioral model into a synthesize-
able model. This is a fatal mistake as it is conducive to low-level
thinking that yields not a behavioral model, but an RTL++ model.

All the techniques illustrated in this chapter, as well as in Chapter 4,
can be used and still yield a poor behavioral model. A good behav-
ioral model captures the details that are functionally relevant and
does not on implementation artifices. For example, the larency of 2
design—the number of clock cycles necessary for an input to be

transformed into an output—is usually not functionally relevant?, If
you insist on writing a model that is clock-cycle accurate with the
actual implementation, you may be spending a lot of maintenance
effort and adding a lot of complexity for a characteristic that may
not be important functionally.

To many, saying that latency may not be a relevant functional detail
and should not be modeled sounds like a recipe for disaster. But if
you take a step back from your design, ignoring its implementation
details, does it really matter whether a particular output comes
exactly N cycles after the corresponding input was sampled? As
long as the order of these outputs is the same, is the time at which
they come out significant?

Consider the speech synthesizer design illustrated in Figure 3-4 on
page 103. To produce audible speech, coefficients must be modified

2. Butif it is relevant, then it should be modeled.
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In some cases,
latency is signifi-
cant,

at regular intervals to produce the different sequences of sounds
that compose normal speech.

For example, to say “cat”, the coefficients would be modified ¢
create the sequence of sounds k7, fa, can, can, e e .
these coefficients, a digitized sound wa\.?éfonn shou’ld colne out at a
8 KHz sample rate. The delay between the time the coefficients
set' axlld the corresponding sound is synthesized i e
as 1t 1s under the limit of perception by the user. A similar ar ument
can be made for packet routers: It does not really matter howglon I}t
takes for packets to transit through a routing node; what matt g'l
that they eventually come out in the same order, ’ e

. From

s irrelevant, as long

The on.ly time where a “detail” like latency is significant is when
the design under verification does not have complete visibility over
a system-level “unit of work”., A unit of work is the smallest
amour{t of data than can be processed by the system: an atomisc
Operation. For example, a packet router’s unit of work .is an enti

packet: I.n a speech synthesizer, it is a phoneme. In a hardw e
tester, it isa complete vector with input and expected output valuafl:re
If the des.lg.n under verification only processes a portion of the uni
of V?’OI‘k,.lf is important that the latencies in the reconvergent path

are'identical so the unit of work is reassembled properly. P

For -example, the input formatter in a hardware tester, as illustrated
in Figure 7-3, only processes the input value. For the ;orrespondin
expected output value to be checked at the proper time, it must havi
the exact same latency as the Expect Delay design. In a acket
router, as illustrated in Figure 7-4, if the packet is dismembelied t
}oe ro_uted by a different switching node, each node must have ao
1dent1c.:al latency for the packet to be put back together properl Ir;
you mix behavioral and RTL models in a system-level veriﬁcatsit)n

-

3. Actually, since the latter i i i
s 8 easier to design, its latency is ma
that of the input formatter, whatever it may be, Y fo 1o match
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Figure 7-3.

Reconvergent
paths in a
hardware
tester

Figure 7-4.

Reconvergent
paths in a
packet router

Do not let the test-
bench dictate what
is functionally rel-
evant.

Details relevant at
the system-level
can be back-anno-
tated.

and each has a different latency, the system-level simulation would
become a very effective packet scrambler!

Expect

Vector _|+ Delay |—> Output | | paco/Fail

Memory T - Compare
put Device ]’
Formatter > under Test
~
o Swx |
| Node
o Swx | |
Input | [ 7] Node .| ‘Output
Buffer : Buffer
o Swx ||
"1 Node

The reason most often cited for making a behavioral model clock-
cycle accurate with the implementation is to be able to pass the
same cycle-oriented testbenches. If the testbenches enforce a spe-
cific latency, they are verifying a specific implementation, not a

specifir.:aticm.4 I hope I have explained successfully how to write
testbenches that are independent of the latency of the design under
verification in Chapters 5 and 6. If your testbenches do not expect a
specific latency, then you need not model it.

An implementation “detail”, such as latency, may not be relevant to
the functionality of the stand-alone design under verification. How-
ever, it may be critical for the proper operation of the system-level
design. If that is the case, such as the example designs shown in
Figure 7-3 and Figure 7-4, the behavioral model still may be mod-
eled as if the latency was not important and perform its transforma-
tion in zero-time. At appropriate points in the input or output paths,
programmable delay pipelines can be introduced so the exact
latency of the implementation can be back-aunnotated into the

4, Unless of course a specific latency is required, in which case it should
be specified in the specification document. And if something is speci-
fied, it should be modeled and verified.
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Sample 7-17,
Configurable

delay pipeline

Specify the func-
tionality, not the
implementation,

beha\.rioraI. model. The behavioral model would then model the
functionality of the synthesizeable model at a clock-accurate level.

Sample 7-17 shows a confi ipeli i
gurable delay pipel
latency of a behavioral model. Y pipeing o adjust the

process (clk)
constant delay: natural := 1.
tybe pipeline_typ is arra :'L
. nt
of dnta ten v Bger range <)

variable pipeline: pipeli
begia pipeline typ(l to delay):

if elk = "1’ then

ac‘:tuaI‘L_ouput <= pipeline(delay);
bPlpeline := output §&

pipeline(l to & _ .
end if; elay 1rs

end process;

An?ther big obstacle to writing good and efficient behavioral mod-
els is the level of the specification for the design. If it is written at a
fory low leyel, it becomes difficult to abstract significant function-
ath and discard irrelevant implementation details. I once had to
wrl.te a behavioral model for a customer whose functional specifi-
cation was done using technology-independent schematics using a
generalq?urpose drawing tool. Each block was specified indepen-
Flem:ly with no description of the overall functionality. Not only did
1t_ make the job of writing RTL code that met timing requirements
difficuit, it made writing a high-level behavioral model impossible
After 10 weeks, T had a model that was barely faster than the RTI_:
mOerI. But after those 10 weeks, I was able to piece the entire
fiesxgn together in my mind and understand the intended functional-
ity. I scrapped the first model and rewrote it entirely in under two
weel'cs. Tl_lat hewer model outperformed the RTL model, Had the
specification been written at an appropriate level in the first place, a

more effective behavioral model could have been written from the
start.
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Behavioral Models Are Faster

They are faster to
write,

They are faster to
debug.

They are faster to
simulate.

They are faster to
bring to “market”.

As shown in “Behavicral versus RTL Thinking” on page 121, a
behavioral model is much faster to write simply because the func-
tionality is described using significantly fewer statements than an
RTL model. Furthermore, behavioral models do not need to meet
physical timing or other implementation constraints. They are writ-
ten with the sole purpose to describe the functionality of a design.

The fewer statements, the fewer bugs. Bugs are easier to identify
because of the simpler descriptions. The code is written based on a
functional description. The code is not cluttered by directives aimed
at a synthesis tool or twisted to be synthesized into specific hard-
ware structures. Behavioral models also tend to use fewer parallel
constructs, instead preferring large sequential descriptions in a few
processes. Sequential code is much easier to debug than parallel
code, since it does not involve synchronization or data exchange

intricacies.

Less code used to describe a function should naturally simulate
faster. But the greatest contributor to the increase in simulation
speed of a behavioral model over a synthesizeable model is avoid-
ing the use of the synthesizeable subset itself. Look at all the pro-
cesses and always blocks used to infer registers. Each and every
one of them is sensitive to the clock. If you remember the discus-
sion on event-driven simulation in “The Parallel Simulation
Engine” on page 189, you know that this sensitivity causes all of
these processes to be scheduled for execution after each event on
the clock signal, whether their state changes or not.

In a typical ASIC activity levels are below 40%. This means that
over 60% of the processes are evaluated for no reason. A behavioral
model only executes when there is useful work to be done. The load
it puts on the simulator is much lower. In the small example illus-
trated in “Contrasting the Approaches” on page 123, the activity in
the behavioral model is estimated to be 20 times lower than in the
equivalent RTL model.

Being faster to write and debug, a behavioral model takes signifi-
cantly less time to develop to a level where it can be used in a sys-
tem-level model. With behavioral models, you are able to start
systemn-level simulations sooner. Because they also simulate faster,
you are able to run more of them, on less expensive hardware,
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The Cost of Behavioral Models

Behavioral mod-
els require addi-
tional authoring
effort.

The maintenance
requires addi-
tional efforts,

So.mn_eone has to write these behavioral models. If you use your
exX1sting resources, it means that the coding of the RTL model will
b.e delayed. If you do not want to affect the schedule of the synthe-
sizeable model, you will have to hire additional resources to write
the behavioral model. But being a completely separate model, it is a
tas_k‘ that is easy to parallelize with the implementation effor; And
writing a behavioral model is not as costly as writing an.RTL
model. A behavioral model that is sufficient to start simulating and
debugging the testbenches should not take more than two person-
weeks t.o produce. A complete model with all of the functionality of
the design under verification should not take more than 5% of the
effort required to write an equivalent RTL model.

When was the last time you were involved in a design project
wherfa the functional specification did not change? Whenever a
functional or architectural change is made, the behavioral model
needs to be modified. Often, these modifications are dictated by the
RTI.J model because the technology cannot implement the original
des1gn.and still meet timing requirements. Some of these imple-
men?atxon—driven changes can be planned for and made easy to
modl.f.y, such as the latency. More significant changes nmay require
rewnting a significant portion of the behavioral model. Toward the
end of a project, when schedule pressurc is at its greatest, it often
leads to the decision of abandoning the behavioral model’in favor

of focusing on the RTL S However, most of the modifications to an
RTL model are made to meet timing goals and do not affect the

functionality of the design and thus sho i i
uld not re i
of the behavioral model, Auite modification

The Benefits of Behavioral Models

Audit the specifi-
cation,

Most‘ specification reviews I have attended focus on high-level
functions and on the spelling and grammatical errors in the docu-
ment. Th.e missing functional details were often left to be discov-
ered_ during RTL, coding. Decisions regarding these functional
details were usually then made according to the ease of implemen-

3. An error in my opinion. See the next section {i
‘ . section titled * i
Behavioral Modelg”, e "The Benefits of
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Simnlation Management

Develop and
debug the test-
benches in paral-
lel with the RTL
coding.

System verifica-
ticn can start ear-
lier.

tation. There is nothing like writing a model to make you thor-
oughly read a specification document.

For example, after you’ve coded a particular function that occurs
under some condition, you’ve come to the else part of the if state-
ment, What should be done when the condition does not occur?
Flip, flip, flip through the specification document. Not a word.
You’ve just found a case of incomplete specification! Since you are
writing the behavioral model faster than the RTL model, you’ll
reach that section of the specification earlier than the RTL design-
ers. By the time the RTL model incorporates this functionality, it
will have been specified. A similar process occurs with inconsisten-
cies in the specification. When the RTL model is written, there are
fewer problems in the specification, and thus it takes less time to
write.

Testbenches are implemented using code, just as RTL models are. If
the RTL. model requires debugging, so do the testbenches. Since a
behavioral model is available much earlier than the RTL code, you
are able to debug the testbenches earlier as well. You are debugging
the behavioral model and the testbenches effectively while the RTL
is being written. And because the behavioral model simulates faster
than the RTL model, the testbench debug cycles are much shorter.

Once the RTL is available, you will have a whole series of
debugged testbenches. Whenever an error is detected, it likely will
be due to an error in the RTL model. I you decide to abandon the
maintenance of the behavioral model after the RTL is available,
debugging the testbenches (which will also need to be modified
whenever the RTL is modified significantly) will take much longer.
It is important to maintain the behavioral model to keep reaping its
benefits for the entire duration of the project.

Figure 7-5 shows a design process that uses behavioral models for
developing the testbenches and the functional verification of the
system. Figure 7-6 shows a comparative timeline for a design and
verification process with and without behavioral models. The
design process is somewhat shortened by using a behavioral model
because the testbenches are already debugged. But the greatest sav-
ing comes from system verification. The behavioral model is avail-
able sooner than the RTL. model, so functional verification can start
much earlier. Because a behavioral model is much smaller and sim-
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Figure 7.5,
Design
process
including
behavioral
model

Figure 7-6,
The effect of
behavioral
models on a
project
timeline

It can be used ag
an evaluation and
integration tool by
your customers,

ulates more efficiently than the equivalent RTL model, you are abie
to creat.e models of larger systems, execute longer testcases and run
on ord'mary hardware platform configurations. If the behavioral
model is demonstrated to be equivalent to the RTL model, the Iatter
never nefads to be brought into the system-level veriﬁc;tion For
Systems incorporating very large ASICs, a behavioral model .ma

be that which makes system verification even possible, ’

Specificati RTL
pecification Co ding_'—> Debug ——p Synthesis

Beh
Verif. Plan Coding ™~ T Sy
- Debug ——p VYStEm
Testbench Y Debug

Coding
RTL Coding 8 i
. ynthesis
] " _RTL+TB Debug N
TB Coding > System Verif o
"
(a) Without Behavioral Model
, RTL Codin Synthesis
TB Coding + Db . RTL Dbg
Bch. g System Verif .

—p

(b) With Behavioral Model

If your design is to be available as repsable intellectual property or
a.chlp.set, a behavioral model can be a powerful marketing too]
-Since it only describes functionality, not implementation, and it is‘
far from being synthesizeable, the behaviora! mode] SI',IOUId not

convey intellectual property information.® A customer could start
using the behavioral model while the legal issues with licensing the
RTL model are being resolved. The system-level models could be
used as application notes. The behavioral model could be used to
st'art the integration of your design into your customer’s design

Smce. reusing intellectual property is about time-to-market a;
!Jehaworal model can be an effective tool to help your custom’ers
Improve the odds that they will meet their market window.

6. Uni . ., L
algofﬁfh tr}:]e intellectual property is in the function itself, such as a DSP
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Dentonstrating Equivalence

The RTL and
behavioral models
must be equiva-
lent.

Demonstrate
equivalence by
using the same test
suite.

The greatest benefit from creating a behavioral model comes from
system verification. To use it instead of the RTL model in a simula-
tion or as a marketing tool, you have to demonstrate that both are an
equivalent representation of the design. I use the term demonstrat-e
because I do not think it will ever be possible to prove mathemati-
cally that they are equivalent.

Equivalence checking can prove that an RTL model is equivalent to
a gate-level model or to another RTL model b_ecause they are struc-
turally very similar. A properly written behavioral model would use
a completely different modeling approach that would be very diffi-
cult to correlate mathematically with the equivalent RTL model.

The only way to demonstrate that the behavio?_al and the RTL {n‘od-
els are equivalent is to verify both of them using the same verifica-
tion environment. If both models pass the same tf-:stcases, from a
system-level perspective, it should not matter which one you are
using. For a testcase to be executable on both models, it must not
depend on a specific implementation. Based con the te,s,;tcase taxon-
omy described in “Functional Verification Approaches” on page 12,
only black- and grey-box testcases can be used to de.mon‘strate
equivalence, Both are executed through the same phys.lcal inter-
face. Both do not depend on a particular implementation of the
design under verification. The grey-box testcase's may not be very
relevant to the behavioral model as they are designed to test a par-
ticular implementation-specific feature in the RTL model, but
should nonetheless execute successfully.
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Pass or Fail?

PASS OR FAIL?

The absence of
error is not a suffi-
cient condition.

Produce and look
for a termination
message.

Sample 7-18.
Terminating a
VHDL simula-
tion

An error in the
testbench could
prevent error
detection.

This section describes how the ultimate failure or success of a self-
checking testbench is determined.

The goal of a testbench is to determine if the design under verifica-
tion passes or fails a simulation. But how do you determine if the
design passed the simulation? Is it by the absence of error mes-
sages? What if the simulation never ran at all? It could be caused by
a lack of licenses, or a runtime error such as running out of memory
or experiencing a power failure, or a simple syntax error in your
source code. You need positive proof that the simulation ran to
completion successfully.

Do not rely on a time bomb to terminate your simulation. Nor
should you attempt to have the simulation terminate by itself
through event starvation. Each simulation should be terminated
intentionally, Upon termination, it should produce a message that
the simulation was terminated normally. If that message is not
present, you must assume that the simulation did not run to comple-
tion and failed. To terminate a simulation from within the testbench,
use the $finish statement in Verilog, or the assers statement in
)VHDL. In OpenVera, use the exit() task. In e, use the stop_run()

routine’. Sample 7-18 illustrates the use of an explicit termination
statement.

test_procedure: process
begin

assert false

report "Simulation terminated normally"
severity failure;
end process test_procedure;

What if there is a functional problem in your testbench? That error
could prevent the testbench from detecting any errors at all. This
would clearly be a Jalse-positive situation, You should always
ensure that your testbench is functionally correct as part of your
testcases. Error detection can be verified by injecting errors deliber-
ately in the design under verification. These errors can be intro-

7. e will go on to execute the ¢lean-up code, but once stop_run() is
invoked, the simulation will terminate eventually.
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Provide consistent
error message for-
mats.

Sample 7-19.

Simulation log
package

Keep track of suc-
cess or failure in
the log package.

e and OpenVera
have predefined
error reporting
procedures.

duced by simply misconfiguring the design for the expected output.
For example, a UART could be configured with the wrong parity
setting to verify that the output monitor detects the bad parity.

The final pass or fail judgment could be made by a script parsing
the simulation output log file, counting all error messages from all
sources. To facilitate the implementation of such a script, use a con-
sistent error format. This style is best accomplished by using a mes-
sage log package that produces consistent headers, as shown in
Sample 7-19. :

module log;
integer n_errs;

task warning;
Swrite ("WARNING at %t: "});
endtask

task error;
N_errs = n_errs + 1;
Swrite ("*ERROR* at %t: "):
endtask

endmodule

By using a single message log package as shown in Sample 7-20, it
is possible for the simulation to keep track of its own success or
failure by checking that no error messages were issued. By includ-
ing a simulation termination function, the final pass or fail indica-
tion can be determined by the simulation, without using a script to
parse the output log.

HVLs come with predefined error message utilities that will declare
a failure if any error message is issued. In OpenVera, the predefined
task error() is used. In e, the predefined procedures warning(),
error(), dut_error() and fatal() are used. The predefined procedures
have additional advantages over manually written ones in that they
may be able to terminate the simulation automatically, exit out of
the simulator, break into the command-line debugger or produce a
call stack dump. The effect of an error message, such as whether to
continue or break the simulation, is usvally user configurable. If
any error message is issued through one of the predefined subpro-
grams, the HVL simulator will produce a final message indicating
failure.
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Sample 7-20.
Determining
pass or fail in
the simuiation
log package

Using a script to
parse the simula-
tion outpnt log is
still a good idea.

medule log;
integer n_errs;

task warning;

$write ('WARNING. at %t: ");
endtask

task error;
n_errs = n_errs + 1;
$write("*ERROR* at %t: "};
endtask

task terminate;
begin
Swrite("Simulation %0sED\n",
o {n_errs) ? "FAIL" : "PASS") ;
$finish;
end
endtask

endmodule

Using a message log package is not sufficient to determine if a
testcase is successful. Other errors could have been generated
before the simulation started, when the lo g package is not available
You still need to confirm the presence of the termination message tc;
verify that the testcase was executed properly in its entirety. Errors
could also have been produced by some verification IP using its
own log package or from within the HDL model that cannot use the
HVL error mes;aging routines. The output log parsing script can
-a_lso detect the presence of errors or warnings issved by the simula-
tion _management tools, linting tools, synfax errors, elaboration
warnings and other possible error conditions not visible to the test-
bench log package. You can find a link to a configurable output log
parser script in the resources section of:

http://Janick.bergeron. com/wtb.
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MANAGING SIMULATIONS

Are you simulat-
ing the right
model?

You've defined your verification task through a verification plan.
You have a test harness with many bus-functional models and util-
ity packages. Several testcases using that test harness have been
written and vou can choose between the RTL and behavioral model

- to simulate them. How do you bring all of these components

together in a single simulation? How can you reproduce a simula-
tion? And more importantly, how do you make sure that what you
simulate is what will be built?

Configuration Management

A configuration is
the set of models
used in a simula-
tion.

It must be easy to
specify a particular
configuration.

Use a script to cre-
ate a configura-
tion,

Configuration management is different from source management.
Source management, as described in “Revision Control” on
page 68, deals with changes to source files and the set of source
files making up a particular release. Configuration management
deals with the particular set of models you decide to use in a partic-
ular simulation. For a specific design, a single configuration would
be composed of a specific test function, the test harness used by that
test function and the model of the design to be exercised by the test-
bench. In a system-level simulation, the configuration would also
include that particular mix of models used to populate the system
model.

The only information required to define a particular configuration
is the identity of the test function, the test harness and the model of
the design under verification. The problem is that each configura-
tion component is composed potentially of several source files and
design units. Many individuals contribute to the creation of these
source files and design units. Their number and names may change
throughout the project. It is not realistic to expect every engineer
who needs to run a simulation to know exactly what makes up a
particular component of the desired simulation. Just as bus-func-
tional models abstract the data from the physical implementation
level, configuration management abstracts the details of the struc-
ture of a model and the files that describe it.

The most efficient way to abstract the configuration details from the
user is to provide a script that expands a test name and an abstrac-
tion level for the design under verification into their respective sim-
ulation components. Different scripts have to be used for different
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Managing Simulations

Sample 7-21.
Configuration
script com-
mand line

There are many
ways of specify-
ing files.

Use the configura-
tion block,

f:lesigns, file system structures and simulators. To simplify the user
}nterface and minimize the amount of repeated information, scripts
infer pathnames and expect particular set-up fiies.

For ex?mple, Sample 7-21 shows the command line of a hypotheti-
cal script named sim_design used to simulate a configuration com-
posed of the test named “basic_tx” on the behavioral model It is
followed by a configuration bomposed of the testcase n:dmed
“overflow_rx” on the RTL model.

% sim_design -b basic_tx
% sim _design -r overflow_rx

Verilog Configuration Management

T.here are six different ways to include a source file into a Verilog
simulation:

1. Specify the filename on the command line.

2. Specify the name of a file containing 2 list of filenames, using
¢ the -f option.

3. Specify a directory to search for fileg likely to contain the defi-

niti()fl ofa 1.11issing module, using the -y option. The files used in
the simulation depend on the +libexs command-line option.

4. Specify the name of a file that may contain the definition of

missing modules, using the -v option.

5. Include a source file inside another using the “include &irective

Tl'le actual file included in the simulation depends on the
+incdir command-line option.

6. Locate files in virtual libraries specified in a library search order

in a configuration block.

Of all the mechanisr.ns for specifying input source files in Verilog,
only the _conﬁguratzon block can be source-controlied and repro-
duced reliably. The configuration block is also the only mechanism

that %s defined formally as part of the language and not left to the
tool implementation.
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Use the -f option if
configuration
blocks are not
available.

Use a configura-
tion block for each
model of the
design.

Use a configura-
tior block for the
test harness

Compiled simula-
tions are discon-
nected from the
source files.

Configuration blocks are a new (and welcome) addition to Verilog-
2001. If your simulator vendor does not support them, complain
loudly and use the -f option until they do. Since the -f option uses a
file to specify the actual command-line options used, it can (and
must) be source controlled as well.

Each available model of the design should be specified using its
own configuration block (or -f file). For example, if you have a
behavioral model, two versions of the RTL model (one for FPGAs,
the other for the final ASIC) and two gate-level models (one
mapped to FPGA gates, the other mapped to ASIC gates), there
should be five different configuration blocks available.

The test harness should come with its own configuration block. The
configuration of the test harness would include the configuration of
all necessary Verilog bus-functional models instantiated in the har-
ness. If Verilog testbenches are used, the test harness configuration
would include the configuration of the self-checking structure.

Using compiled simulation creates a disconnect between the source
file and the simulation of the compiled files. What if the source file
has changed? How do you make sure that what you are simulating
is the proper version of the source files? Configuration manage-
ment techniques for compiled simulations are outlined in the next
section. As all VADL simulators are compiled simulators, the man-
agement of VDL models must deal with this problem. To elimi-
nate this difficulty and provide a familiar interface to experienced
interpreted Verilog users, all compiled Verilog simulators provide
an interpreted-like mode where all the source files are recompiled
every time and simulated immediately.

VHDL Configuration Management

You may not be
simulating what
you thought was
compiled.

All VHDL simulators are compiled simulators. During compilation,
the individual source files are compiled into libraries and translated
to object code. During elaboration, a top-level unit is selected and,
using the configuration information, a hierarchical model is built by
connecting entities and architectures recursively into component
instances. The elaborated model is then simulated. A separate com-
mand (sometimes two) is used to trigger the compilation and the
elaboration, This approach creates a potential disconnect between
the source files and what is simulated ultimately. How do you know
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Use make files.

Use make to
invoke the simula-
tion.

Sampie 7-22,

Invoking make -

The model shonld
report the name
and version of
files.

that the source files located in your directory are the ones you are
simulating?

The 1‘nost effective way to assure a compiled simulation is up-to-
date 1s to use make files. Make files, and the associated make pro-
gram, were created in the mid-1970s to maintain software programs
and make sure that the compiled code was always up to date,

Make files contain dependency rules describing relationships
!)ereen files. If a file is found to be older than a file it depends on,
it is brought up to date using a user-defined command, Nowadays,

it is not necessary to know the frustrating syntax® of make files. All
VHDL §nd compiled Verilog toolsets can generate a make file from
& compiled model, Third-party utilities, such as VMK, can also

generate make files automatically from VHDL or Verilog source
code.

'ljo ensure that a simulation is always up to date, do not invoke the
simulator manually. Some source files might have changed and you
would be simulating an out-of-date model. Instead, use the make
command to invoke the simulator. The program ensures that any
source files that have changed since the last compilation are recom-
piled, in the correct order. There should be a target for each testcage
available for simulation. The name of the target depends on the tool
used to generate the make file, Sample 7-22 shows how to invoke
make using a specific target.

% make basic_tx
% make overflow_rx

i

For additional confidence and a positive confirmation of the files
and version of the files simulated in a compiled model, you should
h-ave each architecture report the name and revision number of the
file that contained it during compilation. Sample 7-23 shows how to
Use a concurrent assert statement and RCS keywords to perform
this task. All of the assert statements are executed at the beginning
of the simulation, displaying the filename and revision information.
Because they are not sensitive to any signals, they do not execute

8. I personally would tike to have a little chat with whomever picked the
TAB character as a significant control character!
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Sample 7-23.

VHDIL. model
reporting its
filename and
revision

Sample 7-24.

Verilog model
reporting its
filename and
revision

Use configuration
units to define the
possible configu-
rations of the
design.

again. Unfortunately, it is not possible to have pa.ckages erport thcnlaulr
source file name and version numbers. A compiled \/’erﬂog1 .rr;lot he
could use a $write statement and an iritial block to accomplish the
same thing, as shown in Sample 7-24.

architecture beh of design is

begin )
assert false . )
report "Configuration: $Header$

severity note;
end beh;
module design(...);

:I:.I:l::l.tial Swrite("Configuration: §Headersi\n');
endmodule

VHDL supports the concept of model configuration using c.onﬁgu-
ration units. Configuration declarations are like asse.mbly mstlil*}u;
tions for a simulation model. They specify which entity and w] Icn )
architecture of that entity should be used for each compone
instantiation.” The author of a model should prov%de a cgnﬁgl_ifﬁ-
tion unit that specifies how to assemble the model in ques’non.f thz
configuration unit becomes an integral part of the source o
model.

For example, as shown in Sample 7-25, there ShOl:lld bea cmilﬁgu—
ration for building the behavioral model of a des1.gn, as wel as.a
configuration for building the RTL model of a design, as shown in

i i 273 of VHDL
information on VHDL cenfiguration, see page
8 E?)l;iri?azr; t;les and Methodologies. 2nd edition, by Ben Cohen (Kluwer
Academic Publisher)
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Sample 7-25,

Configuration

for a behay-
ioral model

Sample 7-26.

Configuration

for an RTL
mode]

Use configuration
units for each
testcase and test
harness.

Sample 7-27,
Configuration
for a test har-
ness

Sample 7.28,
Configuration
for a testcase

Generate the final
configuration to
select the design,

Sample 7-26. There should also be a configuration for building a
model of a board.

configuration beh_design of design is
for beh -- architecture of "design"

end for:;
end beh_design;

configuration rtl_design of design is
for »t1 -- architecture of "design"

end for;

end rtl_design;
There should also be a configuration unit to specify the configura-
tion of the test harness. An example is shown in Sample 7-27. If
testbenches are implemented using VHDL, each testcase would
also be configured using a configuration unit. The configuration of

the testcase should include the configuration of the test harness,
Sampie 7-28 shows an example of a testcase configuration unit.

configuration main of harness is

‘for main -- architecture of "harness"
for cpu:cpu_server use
end for;

end for; - architecture "main’

end main;

library harness;

configuration Lestcase of bench isg

for testcase -- architecture of "bench"
for th:harness use configuration harness.main;
end for; -- configuration "main®

end for; -— architecture "tesgtcage"
end testcase;
If you examine the configuration for the test harmess and the
testcase, you will notice it does not include a configuration specifi-
cation for the design under verification. A default configuration
cannot be used because you want the ability to change which model
you want to simulate using a specific testcase. Once a model s
compiled, the defan]t configuration is selected already.
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Provide a configu-
ration unit tem-
plate,

Sample 7-29.

You could write a different configuration unit for each possible
combination of testcase and design under verification. This would
duplicate a lot of information and would be cumbersome to maiI}—
tain should the structure of the testcase or harness be modified. 1t is
easier to generate the final testcase configuration to include the
confignration specification to the desired design.

The simulation script could parse the VHDL source files to genet-
ate a configuration unit automatically. However, it is best to p.rovxd.e
a testcase configuration template to the script, with a clearly 1d61.1t1-
fiable placeholder for the configuration specification for the des%gn
under verification. Sample 7-29 shows the testcase configuration
unit medified to include a placeholder to be expanded by the simu-
lation script. Using the template, the simulation script only .needs to
replace the placeholder with a reference to the desired design con-
figuration, as shown in Sample 7-30. Notice how the ﬁna! conlﬁgu~
ration unit is able to configure a component instantiation in an
architecture that was configured previously in its own configuration
unit. The generated configuration unit is compiled every time
before each simulation.

library harness; .
configuration testcase of bench is

Configuration  for testcase -- architecture of "bench®
template for a for th:harness use configuration harness.rflain;
test harness for main -- architecture inside cfg '"main’
for duv:design
use <designs>;
end for; ‘
end for; ~-- architecture "main"
end for; -~ configuration "main”
end for; -- architecture "testcase"
end testcase;
408 Writing Testbenches: Functional Verification of HDE Models
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Sample 7-30,
Expanded con-
figuration tem-
plate for a test
harness

library beh_lib;
library harness;
configuration testcase of bench is
for testcase -- architecture of “bench®
for th:harness use configuration harness.main;
for main -- architecture inside cfg "main"
for duv:design
use configuration beh_lib.beh _design;

end for; ‘
end for; -- architecture "main®
end for; -- configuration "main®
end for; -- architecture "testcase’

end testcase:

OpenVera Configuration Management

Use make,

Report the name
and version of
files.

Use a vr file for
the test harness

Vera compiles OpenVera source files into object files. The most
effectivé way to assure the object files are up to date is to use make
files, Make files, and the associated make program, were created in
the mid-1970s to maintain software programs and make sure that
the compiled code was always up to date.

Make files contain dependency rules describing relationships
between files. If a file is found to be older than a file it depends on,
it is brought up to date using a user-defined command. An applica-
tion note in the Vera distribution describes how to generaie make
files antomatically from your OpenVera source code. Note that, for
a complete make file to be generated, the code must be compiled
manually first.

For additional confidence and a positive confirmation of the files
and version of the files used in a specific simulation run, you should
have each class and program report the name and revision number
of the file that contained it during compilation. Sample 7-31 shows
how to use a static data member and RCS keywords to perform this
task in a class constructor. Sample 7-32 shows how to perform this
task for a program.

A vrifile is a list of object files. There should be a vr file for the
transaction-layer harness and a v file for the self-checking struic-

and self-checking 41 Bocause v files cannot include a reference to another vl file
structure. .
and because you cannot specify more than one v#/ file on the com-
mand line using the +vera_mload option, the yr! file for the self-
checking structure must duplicate the content of the transaction-
Writing Testbenches: Functional Verification of HDY. Madale ANG
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Sample 7-31.
OpenVera
class report-
ing its file-
name and revi-
sion

Sample 7-32.

OpenVera pro-
gram report-
ing its file-
name and
revision

Use +vera_vros to
specify stimulus.

class some_bfm { . .
static local bit config printed = 0;

1.::;15}{ new(...) {

if (lconfig_printed) { ‘.
printf("Configuration: $Headers$\n');
once = 1;

program my_tegtcase {

ﬁ)]i‘intf ("Configuration: $Headers\n"):

layer test harness vr{ file. If a proj file is going to be vsed, you can
specify multiple vr! files.

The stimulus to be used in a simulation usually inv91ves more than
one object file. The +vera_load command—line_ option can be used
only once and can specify only a single objec.t file. To specify all of
the object files required to run a simulation, in addition tf’ the ones
specified in any vr file, use the +vera_vros command-line option
with a comma-separated list of object files.

e Configuration Management

Use a top-level
import file for
each major com-
ponent, -

Specify all
required files in a
top-level file.

Each major component of the verification environmcpt (e.g., bus-
functional models, test harness, scoreboard, self-checking .structurclz,
functional coverage collector, random generator, scenano‘deﬁm-
tions and constraint aspects) should have a top-level file that
imports all source files used to implement that component. When-
ever that component will be needed by another component in the
verification environment, the top-level file of the higher-level com-
poﬁent only needs to import the top-level file of the lower-level
component.

Importing a top-level file should not result in a compilation error
because some data types or instances are not found. A top-level file
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Avoid relying on
SPECMAN_PATH
environment vari-
able.

Report the name
and version of
files.

Sample 7-33.

e file report-
ing its file-
name and revi-
sion

Compile the test
harness.

stould import all required source files to compile a verification
component correctly. Do not worry about having a particular source
file imported multiple times from different top-level files: Files
with the same name are imported only once,

You should not rely on the SPECMAN_PATH environment vari-
able to locate the individual files to import. The value of an envi-
ronment variable cannot be source-controlled and cannot be
reproduced from the source code without including an environment
set-up script. Instead, use relative pathnames to locate the imported
files that are not in the same directory as the top-level file. Note that
relative pathnames are relative to the location of the file that speci-
fies them, not the current working directory. Reserve the
SPECMAN_PATH variable for locatin g the top-level file from third
parties that are installed as part of your tool or library distributions,
such as the eRM package or eVCs.

For additional confidence and a positive confirmation of the files
and version of the files used in a specific simulation run, each
imported file should report its name and revision number at the
beginning of the simulation. Sample 7-31 shows how to use RCS
keywords to perform this task in the sys struct.

4

’

<
package ...;
import ...;

extend sys {
init() is also {
outr ("Configuration: $Header$\n") ;
}i
Y .

1l

-

By default, the Specman Elite simulator loads then simulates ¢ code
in a single invocation in interpreted mode. However, any portion of
the verification environment can be pre-compiled using the
sn_compile.sh script and embedded into the Specman Elite base
code. Compiled e code can be mixed arbitrarily with interpreted e
code. To get the best possible performance, you should compile the
portions of your verification environment that are stable and are no
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fonger changing on a daily basis or from simulation to simulation.
The transaction-layer test harness is a prime candidate for compila-
tion. During regression simulations, it is a good idea to compile the
self-checking structure and the functional coverage components as
well.

SDF Back-Annotation

This section may
not be applicable.

SDF files are used
to model accurate
delays.

SDF annotation
can take a long
time.

Back-annotation is a process used only with gate-level models. Due
to their large size, they are excruciatingly painful to simulate in
terms of performance and resouice requirements. The purpose of
gate-level simulation is to verify that the synthesis tool has synthe-
sized the RTL description correctly without modifying the func-
tional behavior. The purpose of gate-level simulation is also to
verify that there are no timing violations. In most circumstances,
these checks are better performed using an equivalence checking
static timing analysis tool (see “Equivalence Checking” on page 9).

In a gate-level model, each gate is modeled using delays estimated
from average output load conditions. However, in a real gate-level
netlist, each gate is subject to different output loads: The gates drive
different numbers of inputs, and the length of the wires connecting
the output of the gate to the driven inputs are different. Each con-
tributes to the load on the output of the gate, producing different
loads for different instances of the same gate.

To be more accurate, gate-level simulations are back-annotated
with delay values calculated from the physical netlist or the layout
geometries. These more accurate delay values are stored in a Stan-
dard Delay File. The SDF file is read by the simulator and each
delay value replaces the average delay estimate for each instance.
Thus, each gate instance can have a different delay value. The delay
between an output pin and each of its driven input pins also can be
different.

Gate-level netlists can contain a few million gates and several mil-
licn pin-to-pin nets or connections. Each must be annotated with a
new delay value. This process can be very time consuming and
should be minimized whenever possible. If you have to recompile
your model for each testcase, you have to perform the back-annota-
tion each time as well.
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Use compiled
back-annotation

whenever possible,

Concatenate
testcases to mini-
mize back-annota-
tion,

Use a single proce-
dure or task to
contro] each
testcase.,

In Verilog, add an

Compiled simulators usvally offer compile-time back-annotation of
a gate-level model. In that mode, the back-annotation of the delay
values is performed once at compile time. Different testcases can be
configured to run on the design in separate simulations without
requiring that the back-annotation process be repeated.

If you must use simulation-time back-annotation, you should mini-
mize the time spent back-annotating the gate-level model of the
design under verification. This reduction can be accomplished only
by minimizing the number of times the simulation js mvoked. To
invoke the simulation only once for multiple testcases, you need to
concatenate each testcase into a single thread that executes each in
sequence. This concatenation is not necessary when using Specman
Elite as the entire e portion of the simulation can be reloaded from
scratch without quitting the HDL simulator. If the design is appro-
priately reset at the start of every e simulation, the new testbench
can proceed as if it had been simulated independently.

You still want each testcase to be written separately, and you want
the ability to simulate them independently during development or
when SDF back-annotation is not required. It is simple to concate-
nate each testcase into a sequence, if each testcase is encapsulated
in a single task or procedure. To simulate a particular testcase, you
-simply have to call the task or procedure that encapsulates it. The
testcases are concatenated by creating a sequence of rask or proce-
dure calls in a sequencing process.

Sample 7-34 shows the Verilog testcase, originally shown in Sam-

::;ialtbltrk to ple 6-7 on page 325, encapsulated in a fask. To execute this testcase

< : ]

testc:Se St:nd_ 1 stand-alone mode, an inifial block calls the task, if the simulation

alone. is invoked with the +standalone user-defined simulation-time
option, To execute this testcase in stand-alone mode, presumably to
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Sample 7-34.
Verilog
testcase encap-
sulated in a
task

Sample 7-35.
Command-line
forstand-alone
simulation

Control the
sequence of
testcases using
user-defined
options.

debug a problem, you would compile only this testcase with the
harness and the design under verification, as shown in Sample 7-35.

module testcase;

task testcase;
reg ‘ATM_CELL_TYP cell;

begin
th.write (16 'h0001, 16'h0010);

1':h.atm_port_0 .s8end(cell);
end
endtask

initial
begin ]
if ($testdplusargs(”"standalone")) begin
testcase;
syslog.terminate;
end
end
endmodule

% verilog -f tests/testcase.f \
~-f beh/design.£f
+standalcne

The sequence of testcases is created in a separate module. It con-
tains an initial block that can invoke all known testcases. To control
which testcases are run and which ones are not, each fask call is
embedded in an if statement that tests for a user-defined command-
line option. That way, you might run only a subset of testcases
instead of all of them. Sample 7-36 shows the structure of the
testcase sequencer module. To run a set of testcases, you simply
have to specify the name of the desired testcases as a user-defined
command-line option. To run all testcases, simply use the
+all_testcases user-defined option, Sample 7-37 shows an example
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Sample 7-36,

Sequencer
module for
simulating
multiple
testcases

Sample 7-37.
Sequencing
different
testcases

In VHDL, pass all
client/server con-
trol signals to the
encapsulating pro-
cedure,

Control the
sequence of
testcases using
top-level generics.

of each usage with a VCS-compiled simulation. Notice how it was
unnecessary to recompile the model to execute different testcases,

module seguencer:

initial

begin: sequence
reg all;

all = $testéplusargs( "all_testcases");

if {(all It $testéplusargs ( "testcasel"} begin
testcasel.testcasel;

end .

if (all 11 S$testdplusargs('testcase? "} begin
testcasel. testcase2;

end

syslog.terminate;
end
endmodule

% vcs -F tests/all.mft -F gate/design.mft \
-F phy/sdf.mft

% ./simv +testcase3’ +testcase?

% ./simv +all_testcases

Encapsulating the testcase in a VHDL procedure requires that all
client/server control signals be passed through the procedure inter-
face as signal-class arguments. Each testcase can be located in indi-
vidual packages. Sample 7-38 shows the testcase originally shown
in Sample 6-15 on page 332 encapsulated in a procedure in a pack-
age.

The sequence of testcases is implemented in a process in the archi-
tecture instantiating the test harness. The process can invoke all
known testcases. To control which testcases are run and which ones
are not, each procedure call is embedded in an if statement checking
if a top-level generic has been defined, That way, you might run
only a subset of testcases instead of all of them,

Sample 7-39 shows the structure of the testcase sequencer architec-
ture. To run a set of testcases, you have to override the defauit value
of the top-level generic corresponding to the desired testcase. The
type of the top-level generics is integer because some VHDL simu-
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Sample 7-38.

Encapsulated
client testcase

use work.i386sx;
package body testcase is

procedure do_testcase(
signal to_srv : out i386ax.to_srv_typ;
-signal frm srv: in 4i386sx.frm srv typ)

is
variable data: data_tvp:;

begin
-- Perform a read :
1386sx.read(..., data, to_srv, frm srv);
-- Perform a write
i386sx.write(..., ..., to_srv, frm srcv);

end do_testcase;
end testcase;

lators may not support user-defined or enumerated types when set-
ting a generic from the command line. To run all testcases, simply
override the value of the all_testcases top-level generic., Sample 7-
40 shows how to select different testcase sequences by setting the
top-level generics on the simulation command line under Model-

Sim.
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entity sequencer;

Sample 7-39, ;
Sequencer generic {all_testcases: natural := 0;
architecrnre Ezsgcaseg ¢ natural ;= §;
ﬂxshnuhﬁng stcase natural := 0; ,..);
- end ; o
multiple sequgncer,
te
Stcases use work.testcasel;
use work.testcase2; -
use work.i386sx;
architecture test of sequencer is
begin
duv: design;
run:process
begin
if all_testcases + testcasel > 0 then
testcasel.do_testcasel(i3865x.to_srv,
i386sx. :
end if, X.frm_srv) ;
if all_testcases + testcase? > 0 then
testcase2.do_testcase2(i3865x.to_srv,
i386sx.f ;
end if; TSR
assert false
report "Simulation completed®
severity failure;
end process run;
end test;
- % vsim -Gtestecase3-=1 -Gtestcas
] = a7=1
Sanuﬂe?40. % vsim -Gall_testcases-1 s Seauencer
Sequencing - ~T Feduencer
different
testcases
erting Testbenches: Fanetinnal Varifinatiae ~c1rmr =« + .
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Output File Management

Simulations pro-
duce output files.

Multiple simula-
tions can clobber

each other’s files.

Specify output
filenames on the
command line in
your simulation
run script.

A simulation usually creates at least one output file. For example,
Verilog-XL simulations generate a copy of the output messages in a
file named verilog.log by defaunlt. Another frequently produced out-
put file is the file containing the signal trace information for a
waveform viewer. These output files are valuable. They are used to
determine if the simulation was successful. They should be saved
after each simulation run and parsed or post-processed to determine
success or failure.

‘When you run only one simulation at a time, you can save them by
renaming them after the completion of the simulation. That way,
you can keep a history of testcases that were run on the design
under verification. However, if you run multiple simulations in par-
allel, usually on different machines, the output files from one simu-
lation can clobber those of another. If you rely on default or
hardcoded filenames, you will not be able to run simulations in par-

allel. You must be able to name files differently for different

testcases.

A few default cutput filenames can be changed from the command
line. For example, the -/ option in Verilog can be used to change the
name of the output Ipg file, In “Configuration Management” on
page 402, I recommended that you use a script to help manage the
configuration of a simulation. That same script can also manage the
naming of the output files according to the name of the testcase.
Sample 7-41 shows how a perl script can use the name of the
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Sample 7-41.
Simulation run

script

In VHDL, use a
string type con-
stant and generic,

In Verilog, use a
parameter.

Use a string
expression in
HVLs.

testcase specified on the command line to rename the output log file
in a Verilog simulation.

require “getopts.pl®;
&usage if &getopts('hr") || Sopt_h il @ARGV;

sub usage {
print <<USAGE:
Usage: $0 [-r] {testcase}
-r Use the RTL model instead of behavioral
USAGE
exit (1);
}

Sdesign = {(Sopt_r) ? "rtle “beh";
$prefix = "verilog -f $design/design.f *;

foreach $test (@ARGV) ¢
‘Scommand = "$prefix -f tests/Stest.f";
Scommand .= " -1 logs/%test.log’;
system{Scommand) ;

Not all filenames can be renamed from the command line. In
VHDL, all file objects are named from within the VHDL model. To
make the filenames unique for each testcase, provide the name of
the current testcase to the test harness to create unique filenames. In
the testcase itself, you must be careful to use the testcase name to
generate filenames as well. The simplest way is to have each
testcase contain a constant defined as the (unique) testcase name.
The value of that constant would be ysed to generate filenames and
passed to the test harness via a generic. Sample 7-42 shows an
example. Notice how the string concatenation operator is used to
generate a unique filename in the file declarations.

A similar technique can be used in Verilog. You simply use a
parameter instead of the constant and pass the testcase name to the
test harness as a parameter association. Strings in Verilog are sim-
ply bit vectors with eight bits per character. They can be concate-
nated using the usual concatenation operator to create unique
filenames. Sample 7-43 shows an example.

In OpenVera and e, filenames are specified as string expressions.
These expressions can include a testcase name specified as a string
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Sample 7-42.
Generating
unique file
names in
VHDL

Sample 7-43.

Generating
unique file
names in Ver-
ilog

Sample 7-44.

Generating
unique file
names in e

architecture test of ?ench lf coase"
constant name: string := "tesgtca H

component harness .
generic (name: string);

end component;
begin

th: harness generic map (name); ,

process
file results:

begin

text is out name & ".out";

end process;
end test;

module testbench is

parameter name = "Lestcase";

harness #(name) th ();

initial

begin e
integer results; ) rL
results = Sfopen({name, ".out"})};

end
endmodule

variable. The final filename can be built using the .spring‘()l ar}]d
appendf() predefined routines respectively, as shown in Sample 7-

44,

extend sys { .
testname: string; .
keep testname == *“Corner_case’;
Y
appendf (“%s.out”,
sys.testname} ;

files.open{fname, “w” :
"Scratch File”);

var fname: string =

var fp : file =

Managing Simulations

Seed Management

Seeds contribute
random stability,

Don't always use

the default seed,

Pick random
seeds.

Sample 7-45,
Generating a
random seed

The main concern with random stinmulus is reproducing a simula-
tion that detected a functional error Random stability allows the
same input sequence to be generated if the same initial seed is used,
even in the presence of changes in the source code. Any instance
that is not affected by randomization-related source code changes—
such as additional constraints or random objects—will always pro-
duce the same pseudo-random sequence in two different simula-
tions if the same seed is used, even if other instances are affected by
such changes. Random stability involves more than using the same
seed. A C++ model using the random() function is not randomly
stable as any change in randomization-related code will affect all
subsequent calls to the function in the entire model. With random
stability, the effects are localized in the modified instance.

Vera and Specman Elite use a default seed unless a different seed is
specified. Most people keep using the default seed over and over
until the simulation runs error free, then they consider their job
done. Using the same seed will generate the same input sequence.
You will not be verifying or debugging your environment under dif-
ferent conditions. Before declaring your environment or bus-func-

tional model “done”, verify it with different seeds.

To pick random seeds using Specman Elite, use the -seed= random
option to the fest or gen command. To pick a random seed using
Vera, use the +vera_random_seed=... command-line option, where
“..” is & random value generated by a suitable function in your sim-
ulation run script or the output of the simple C program shown in
Sample 7-45. Do not generate a random seed based on the current
system time from within Vera because, by the time the random seed
is set, some constructors may already have been invoked, initializ-
ing the local random source for those instances from the default
seed,

#include <stdlib.hs

#include <time.hs

main{() {
srandom (time (NULL) ) ;
printf("$d\n", random() ) ;
exit{0);

}
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Regression
Simulation Management

Seed used is dis-
played.

Sample 7-46.

Random seed
display from
Specman Elite

Sample 7-47.

Random seed
display from
Vera

Associate output
files with seeds.

Inciude the seed in
all output file
names.

Whatever seed is being used in a simulation, its value must be | REGRESSION

known so it can be reused. Vera and SpecmE}n Elit.e d1splal)lz th:i
value of the seed used at the beginm'qg O.f the s1mu1at1<_)n, as §b12:w;0
in Sample 7-46 and Sample 7-47. Thl.S dlsplay mak_es it posszl
associate the results in an output log file with a particular seed.

Specman> test -seed=random

Doing setup .
CGenerating the test using seed 7005084...

Starting the test

Is i
% vera_cs +vera_random_seed=‘random

V-\H;xl;{NING: override default seed 1 with command
line seed 715573055

Simulation results are the product of a simulatic.:on run with a spe(;
cific seed. Performing another simulation .run, using the exgct tIs.larrlé_
code, but with a different seed will yievld d1fferer_1t .resultcsl . I(t) is ! t:his
fore important to associate results with a specific seea.l nc s
association exists, results can be reproduced. They S?' c; be
graded to identify which seeds contribute most toward the final v

ification objective.

If the same output filename is used by two simulations of.thelsztlixtr)ls
code but using different seeds, the results from tpe first 51m1.tl a on
will be lost. You should include the seed vrdlue in all outg;; pa -
names, This technique can be done }:)y putting all outpu‘t i hes ;ﬁe-
seed-specific directory or by includ{ng the seed value in § e e
name itself. Specman Elite already 1r'1c1udcs the seed vgue in the
functional coverage database output fllfz name. But any file frfeii <
by the user, the default specman.elog file or any Vera output file
not, by default, associated with the seed.
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A regression
ensures backward
compatibility.

A regression suite ensures that modifications to the design remain
backward compatible with previously verified functionality. Many
times, a change in the design made to fix a problem detected by a
testcase, will break functionality that was verified previously. Once
a testbench is written and debugged to simulate successfully, you
must make sure that it confinues to be successful throughout the
duration of the design project.

Running Regressions

Regressions are
run at regular
intervals.

Divide directed
testcases into two
groups.

Rank seeds.

Testbenches may
have a fast mode
to speed up regres-
sions.

As individual self-checking testbenches are completed, they are
added to a master list of testhenches included in the regression sim-
ulation. This regression simulation is run at regular intervals, ysu-
ally nightly. For directed testcases, simulations are run one after
another. For random-based testbenches, simulations are run repeat-
edly using different seeds. As the number of testbenches or the size
of the functional toverage space grows, it may not be possible to
complete a full regression simulation overnight.

Directed testcases can then be classified into two groups: One
group s run every night, while the second group is included only in

" regressions run over a weekend. Testcases selected for the first

group should be the ones that verify the basic functionality of the
design.

With random-based testbenches, rank!? seeds based on their incre-
mental contribution to the overall functional coverage goal. Select
the seeds that provide the greatest contribution and start the regres-
sions simulation with those, If there is still time left in the regres-
sion period, continue with additional, randomly selected seeds.

Another approach is to provide a fast mode to testcases where only
a subset of the functionality is verified during overnight regression
simulations, or simulations are run for shorter period of time with
the same seed, The full-length simulation would be performed only
during individual simulations or regression simulations over a
weekend. In Verilog or OpenVera, the fast mode could be turned on
using a user-defined command-line option, as shown in Sample 7-

10.In Specman Elite, see the rank cover command.
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Sample 7-48.

Implementing
a fast mode in
a Verilog test-
bench

Sample 7-49.

Implementing
a fast mode in
a VHDL test-
bench

Use a script to run
regressions.

48. In VHDL, it could be turned on using a top-level gene.ric, as
shown in Sample 7-49. In ¢ it could be twned on by loading an
additional aspect composed of additional constraints and method

extensions.

% verilog ... +fastmode

module testcase;

initial
begin . .
// Repeat only 4 times in fast mode
repeat (($testéplusarg('+fastmode"))?4:256)
begin :
end
syslog.terminate;
end
endmodule

entity bench is

generic (fast_mode: integer := 0);
end bench;
architecture test of bench is
begin
process .
variable repeat: integer := 256;
begin

-- Repeat only 4 times in fast mode

if fast_mode /= 0 then
repeat :1= 4;

end if;

for I in 1 to repeat loop

end loop;

assert false
report "Simulation completed”
severity failure;

end process;
end test;

A regression script could invoke each testbench in .the regression
test suite, for a specific number of seeds, using th.e smm]at?on con-
figuration script used to invoke individual simulations, as discussed
in “Configuration Management” on page 402. If the. numbz?r and
duration of testbenches in the regression suite make it impossible to
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Regression

Tun a regression simulation in the allotted time, you will want to
consider parallel simulations. If you do, it is necessary that test-
benches be designed to produce resuits independently from each
other, as discussed in “Output File Management” on page 418. Par-
allel simulations can be managed using readily available utilities,
such as pmake or LSF,

Regression Management

Check out a fresh
view with local
copies.

Sample 7-50.

Tagging and
retrieving a
particular revi-
sion of a view

Put a time bomb in
all simulations.

Not all source files are suitable for regression runs. If you are using
your revision control system properly, you shouid be checking in
files at times convenient for you, not convenient for the regression
run. The latest version of a file might contain code that was not ver-
ified at all or that might even have syntax errors. You do not want to
waste a regression simulation on files that were not debugged prop-
erly. Before running a regression, you should checkout a complete
-view of the source control database, populated with local copies
whose revisions are tagged as being suitable for regression testing,
This tag is applied by verification and design engineers once they
have confidence in the basic functionality of the code and are ready
to submit that particular revision of the testbench or the design to
regression. Sample 7-50 shows an example of tagging a particular
view of a file system, then checkout the particular files associated
with a tag at a later time using CVS.

% cve tag -R regress

% cvs update -da -rregress

One of the greatest killers of regression simulations, second only to
the infinite loop, is the simulation that never terminates. A simula-
tion will run forever if a condition you are waiting for never occurs.
The clock generator keeps the simulation alive by generating events
continuously. Time advances until the maximum value is reached,
which, in modern simulators using 64-bit time values, will take a
long time! To prevent a testcase from hanging a regression simula-
tion, include a time bomb in all simulations. This time bomb should
go off after a delay long enough to allow the normal operations of
the testcase to complete without interruption. Sample 7-51 shows a
time bomb, used with a concurrent procedure call in Sample 7-32,
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Sample 7-51.
Time bomb
procedure

Sample 7-52.

Using the time
bomb proce-
dure

Do notrely on a
time bomb for nor-
mal termination.

Automattcally
generate a report
after each regres-
sion run.

The procedure could be modified to include a signal argument that,
when triggered with an event, would reset the fuse. ‘

package body bomb_pkg is

procedure timebomb{constant fuse: in time) is
begin
wait for fuse;
assert false
report "Boom!"
severity failure;
end timebomb;

aend bomb_pkg;

use work.bomb_pkg.all;
architecture test of bench is
begin

bomb: timebomb(fuse => 12 ms):

test_procedure: process
begin

end process test_procedure;
end test;

The time bomb should be used only to prevent ranaway simulations
from running forever. It should not be used to terminate a testcase
under normal conditions. It would be impossible to distinguish
between a successful completion of the testcase and a deadlock
condition. Furthermore, the time bomb would require fine funing
every time the testbench or design is modified to avoid the testcase
from being interrupted prematurely or wasting simulation cycles by
running for too long.

Once the regression simulation is completed, the success or failure
of each testease in the regression suite should be checked using the
output log scan script (see “Pass or Fail?” on page 399.) The results
are then summarized into a single regression report outlining which
particular testbench and seed was successful or unsuccessful. It is a
good idea to have the regression script mail the report to all the
engineers in the design team to ensure that the design remains back-
ward compatible at all times. Reviewing this report also should be
the first item on the agenda in any design team meeting.
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Suminary
SUMMARY
Write a behavioral model to help debug your verification environ-
ment sooner and faster.
Behavioral models are not the same as RTL models but must pass
the same verification suite.
Behavioral models enable system-level verification,
Carefully model exceptions in behavioral models.
Use a common error reporting mechanism,
Use a script to look for the absence of error messages and the pres-
ence of the termination message to declare if a simulation com-
. Pleted successfully.
Manage your models and the components of the verification envi-
ronment using configuration techniques.
Have compiled code report the filename and version number in the
output log file.
Have a mechfmism for reporting—and later specifying—a seed
used for a particular simulation run.
Separate output files for each testbench and each seed used to simu-
late each testbench.
R_un regression simulations at regular intervals, using a tagged ver-
sion of the design and verification environment.
Include a ti.me bomb in all simulations to prevent a single testbench
from blocking an entire regression run.
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APPENDIX A  CODING GUIDELINES

Verisity has ¢
coding guide-
lines.

Guidelines are
structured from
the generic to
the specific,

Define guide-
lines as a group,
then follow
them,

There have been many sets of coding guidelines published for hard-
ware description languages, but historically they have focused on
the synthesizeable subset and the target hardware structures. Writ-
ing testbenches involves writing a lot of code and also requires cod-
ing puidelines. These guidelines are designed to enhance code
maintainability and readability, as well as to prevent common or
obscure mistakes,

Verisity has published coding guidelines it recommends be used
when coding e. These guidelines can be found in the shareware sec-
tion of the Verification Vault (http://www.verificationva-
ult.com).

The guidelines presented here are reproduced with permission from
the Reuse Methodology Field Guide from Qualis Design Corpora-
tion (http:/ /v . qualis. com). They are organized from the
general to the specific. They start with general coding guidelines
that should be used in any language. They are followed by guide-
lines specific to hardware description languages. Verilog- and
VHDL-specific guidelines follow after that. Note: A guideline
applicable to a more specific context can contradict and supersede a
more general guideline.

Coding guidelines have no functional benefits. Their primary con-
tribution is toward creating a readable and maintainable design.
Having common design guidelines makes code familiar to anyone
familiar with the implied style, regardless of who wrote it, The pri-
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Coding Guidelines

mary obstacle to coding guidelines are personal preferences. It is
important that the obstacle be recognized for what it is: personal
taste. There is no intrinsic value to a particular set of guidelines.
The value is in the fact that these goidelines are shared by the entire
group. If even one individnal does not follow them, the entire group
is diminished.

DIRECTORY STRUCTURE

Use an identical directory structure for every project.

Using a common directory structure makes it casier to locate design
components and to write scripts that are portable from cne engi-
neer's environment to another. Reusable components that were
designed using a similar structure will be more easily inserted into a
new project.

Example project-level structure:

.../bin/ Project-wide scripts/commands
doc/ System-level specification documents
SoCs/ Data for SoCs/ASICs/FPGA designs

beards/ Data for bcoard designs
systems/ Data for system designs
mech/ Data for mechanical designs
shared/ Data for shared components

At the project level, there are directories that contain data for all
design components for the project. Components shared, unmodi-
fied, among SoC/ASIC/FPGA, board and system designs are
located in a separate directory to indicate that they impact more
than a single design. At the project level, shared components are
usually verification and interface models.

Some “system” designs may not have a physical correspondence
and may be a collection of other designs (SoCs, ASICs, FPGAs and
boards) artificially connected together to verify a subset of the sys-
tem-level functionality.
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Directory Structure

Eac'h design in the project has a similar structure. Example of a
design structure for an SoC:

SoCs/name/ Data for ASIC named "name*
doc/ Specification documents
bin/ Scripts specific to thig design
beh/ Behavioral model
rtl/ ' Synthesizeable model
syn/ . Synthesis scripts & logs
phy/ Physical model and SDF data
verif/ Verif env and simulation logs
SoCs/shared/ Data for shared ASIC components

Qomponents shared, unmodified, between SoC designs are located
In a separate directory to indicate that they impact more than a sin-
gle design. At the SoC level, shared components include processor
cores, soft and hard IP and internally reused blocks.

Use relative pathnames.

Using absolute pathnames requires that future use of a component
or a design be installed at the same location. Absolute pathnames
also require that all workstations involved in the design have the
design structure mounted at the same point in their file systems.
Th.e name used may no longer be meaningful, and the proper mount
point may not be available.

If full pathnames are required, use preprocessing or environment
variables.

Put a Makefile with a default 'alr target in every source directory.

Makefiles facilitate the compilation, maintenance, and installation
of a design or model. With a Makefile the user need not know how
to build or compile a design to invoke “make all”, Top-level make-
files should invoke make on lower level directories.
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Example “all” makefile rule:
all: subdirs ...

SUBDIRS = ...
subdirs:
for subdir in $({SUBDIRS); do \
(cd $&subdir; make); \
done

VHDL Specific -

Locate the directories containing the libraries as subdirectories of the source
directories.

Ttis a good idea to name a library according to the VHDL toolset it
corresponds to. This naming convention makes it possible to use
more than one VHDL toolset on the same source installation.

Example:

.../8cC/name/beh/
work.nc/ NC library
work.msim/ McdelSim library
work.vss/ V55 library

rtl/
work.nc/ NC library
work.mgim/ ModelSim library
work.vss/ V55 library

Create a file that lists all required libraries (other than WORK) and lists the full
relative path name to the directory containing the source files for that library.

Having this file makes it easier to locate all source files required by
a design or a portion of a design. This file also can be processed by
a script that automatically generates the VHDL toolset Hbrary map
file, which associates logical library names and container directo-

ries.
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Directory Structure

Verilog Specific

Create a file that lists all required source files and command-line options for

simulating the design in every directory that contains i ipti
: a Veril
design (or sub-degimy. ilog description of a

.The ﬁle, called a manifest file, is used with the -f option when
invoking the Verilog simulator.

To include a sub-design in a higher—lével design, i i i
_ : an, include the manifest file for
the sub-design using the - option in the higher-level manifest file.

This structure effectively creates hierarchical manifest files.

Specify files load i < . . _
pgthnfayme, ed using the “include directive using a complete relative

Requiri‘ng the use of a +incdir option on the Verilog command line
makes it impossible to determine, from the source code only, which
files are required to describe a model completely. The exact com-
mand line used is also required to reproduce any problems. If a
complete relative pathname is specified, it becomes easy to locate
all files required to make up a complete mode].
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GENERAL CODING GUIDELINES

Comments

These guidelines are intended to be used for any programming or
scripting language. Additional guidelines for HDL and language-
specific descriptions can be found in the section titled “HDL Cod-
ing Guidelines” on page 452.

Put the following information into a header comment for each source file:
copyright notice, brief description, revision number, original author name and
contact data, and current author name and contact data.

Example (PERL script under RCS):
/usr/lecal/bin/perl

(c) Copyright 1999, Qualis Design Corporation
All rights reserved.

This file contains proprietary and confidential
information. The content or any derivative werk
can be used only by or distributed to licensed
users Gr OWNners.

Description:
This script parses the ocutput of a set of
simulation log files and produces a
regression report.

Original author: John Q. Doe <jdoeBgualis.com>
Current author : Jane D. Hall <jhall@gualis.com=>

#1
#
#
#
#
#
#
#
#
Wt
#
#
#
#
#
#
#
# Revigion : S$Revisionsg
3

Use a trailer comment describing revision history for each source file.

The revision history should be maintained automatically by the
source management software. Because these can become quite
lengthy, put revision history at the bottom of the file. This location
eliminates the need to wade through dozens of lines before seeing
the actual code.
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General Coding Guidelines

Example (shell script under RCS):

#
# History:
#

# $Logs
#

. pomments_ should be written with the target audience in mind: A
Junior engineer who knows the language, but is not familiar with

the design, and must maintain and modify the design without the
benefit of the original designer’s help.

Example of a useless comment (C):

/* Increment i */
14+;

Example of a useful comment (C):

/

* Move the i i
. read pointer to the next input element
14+;

Prgface eaqh major section with a comment describing what it does, why it
exists, how it works and assumptions on the environment. l

A major section could be a process in VHDL, an always block in

Verilog, a function in C, a unitin e, a class in OpenVera or a long
sequence of code in any language.

It shf)uld be possible to understand how a piece of code works by
!ookmg at the comments only and by stripping out the source code
itself. Ideally, it should be possible to understand the purpose and

structure of an implementation with the source code stripped from
the file, leaving only the comments. '
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Describe each input and output of subprograms in individual comments.

Describe the purpose, expected valid range, and effects of each
input and output of all subprograms or other coding unit supported
by the language. Whenever possible, show a typical usage.

Example (PERL):

%
# Subroutine to locate all files matching a given

# pattern under a given directory path

#
sub scandir { # Returns array of filenames
local{sdir, # Dir to recursively scan (str)
$pattern) # Filename pattern (regexp str)
= @_;

}

Delete bad code; do not comment-out bad code.

Commented-out code begs to be reintroduced. Use a proper revi-
sion control system to maintain a track record of changes.

Layout

Lay out code for maximum readability and maintainability.

Saving a few lines or characters only saves the time it takes to type
it. Any cost incurred by saving lines and characters will be paid
every time the code has to be understood or modified.

Use a minimum of three spaces for each indentation level.

An indentation that is too narrow (such as 2), does not allow for
easily identifying nested scopes. An indentation level that is too
wide (such as 8), quickly causes the source code to reach the right
margin.

Write only one statement per line.

The human eye is trained to look for sequences in a top-down fash-
jon, not down-and-sideways. This layout also gives a better oppor-
tunity for comments.
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General Coding Guidelines

Example of poor code layout (PERL):

$1 = 1; print "Continue (y/n) ? v} v;

;

$ans = <STDIN>; last if %ans =~ m/A\s*[nN]/; |

Example of good code layout (PERL):

# Prompt the user...
$1 = 1;
print “Continue (y/n) ? [y] ';

r

# Read the answer
$ans = <STDIN>;

# Get.out if answer started with a 'n' or "Nt
last if Sans =~ m/s\s*[nN]/;

Limit line length to 72 characters. If you must break a line, break it at a conve-

nient location with the continuation statem i i
ent and ithi
the context of the first token, =lan the line property within

lfrinting. devices are still limited to 80 characters in width. If a
+ fixed-width font is used, most text windows are configured to dis-
play up to 80 characters on each line. Relying on the automatic line

wrapping of the display device may yield unpredi
hrapping of the V¥ predictable results and

Example of poor code layout (Verilog):

#10
expect = Srealtobits({coefficient * datum)

+ 0.5);
Example of good code layout (Verilog):

#10 expect = Srealtobits({{coefficient * datum)
+ 0.5);
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Use a tabular layout for lexical elements in consecutive declarations, with a
single declaration per line.

A tabular layout makes it easier to scan the list of declarations
quickly, identifying their types, classes, initial values, etc. If you
use a single declaration per line, it is easier to locate a particular
declaration. A tabular layout also facilitates adding and removing a
declaration.

Example of poor declaration layout (VHDLY):
signal counta, countb: integer;
signal c: real := 0.0;

signal sum: signed(0 to 31);
signal z: unsigned(6 downto 0);

Example of good declaration layout (VHDL):

signal counta: integer;
signal counthb: integer;

gignal c : real = 0.0;
signal sum : signed (0 to 31} ;
gignal =z : unsigned (6 downto 0 };

If supported by the language, use named associations when calling subpro-
grams or instantiating subunits. Use a tabular layout for lexical elements in
consecutive associations, with a single association per line.

Using named associations is more robust than using port order.
Named associations do not require any change when the argument
list of a subprogram or subunit is modified or reordered. Further-
more, named associations provide for self-documenting code as it is
unnecessary to refer to another section of the program to identify
what value is being passed to which argument. A tabular layout
makes it easier to scan the list of arguments being passed to a sub-
program quickly. If you use one named association per line, it is
easier to locate a particular association. A tabular layout also facili-
tates adding and removing arguments.
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Example of poor association layout (Verilog):

fifo in_buffer(voice_sample%retimed,
valid_voice_sample, overflow,
volce_sample, 1'bl, clk_8kHz,
clk_Z20MHz) ;

:

Example of good association layout (Verilog):

fifo in_buffer{.data_in {(voice _sample),
-valid_in (1'bl),
.clk_in (clk_8kHz),
.data_out {voice_sample_retimed),
.valid_out (valid_voice_sample),
.clk_out (clk_20MHz),
.fuil {(overfiow),
.empty ()):

Syntax

Do not use abbreviations.

)

Some -}anguages, particularly scripting languages, allow using an
a_bbrewated syntax, usually as long as the identifiers are unique pre-
leCS'. Long form and command names are self-documenting and
pl’OX.’l‘de 4 more consistent syntax than various abbreviations. If
additional commands are later added to the language, abbreviati.ons
that used to be unique may now conflict with the new commands

a.nd require modification to remain compatible with the newer ver-
sions,

Example of poor comimand syntax (DC-shell):

re -f verilog design.v

Example of good command syntax (DC-sheil):;

read -fcrmat verilog design.v
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Encapsulate repeatedly used operations or statements in subprograms.

By using subprograms, maintenance is reduced significantly. Code
only needs to be commented once and bugs only need to be fixed
once. Using subprograms also reduces code volume.

Example of poor expression usage (Verilog):

// sign-extend both operands from 8 to 16 bits
operandl = {{8 {ls_byte[7]1}}, ls_byte}:
operand?2 {{8 {ms_bvte[7]1}}, ms_byte};

i

Example of proper use of subprogram (Verilog):

// sign-extend an 8-bit wvalue to a 16-bit value
function [15:0] sign_extend;

input [7:0] value;

sign_extend = {{8 {valuel7]}}, value};
endfunction

// sign-extend both operands from 8 to 16 bits
operandl = sign_extend(ls_byte);
operand2 sign_extend (ms_byte) ;

Use a maximum of 50 consecutive sequential statements in any statement

block.

Too many statements in a block create many different possible
paths. This layout makes it difficult to grasp all of the possible
implications. It may be difficult to use a code coverage tool with a
large statement block. A large block may be broken down using
subprograms.

General Coding Guidelines
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Use no more than three nesting levels of flow-control statements.

Understanding the possible paths through several levels of flow
Cf)ntrol becomes difficult exponentially. Too many levels of deci-
ston making may be an indication of a poor choice in processing
sequence or algorithm. Break up complex decision structures into
separate subprograms.

Example of poor flow-control structure (C):

if (a == 1 && b =
switch (val) ({
4.
5: while (!done) {
if (val % 2) {
odd = 1;
if (choice == val} {
for (3 = 0; § < val; j++4) {
select(j] = 1;

= 0) {

}
done = 1;
H
} else {
o odd = 0;
}
}
break;
O: for (i = 0; 1 < 7; i++) {
select[j] = 0;
}
break;
default:
z = 0;

}
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Debugging

Example of good flow-control structure (C):

void
procesg_selection{int wval)
{
odd = 0;
while (!done) {
if (val % 2) {
odd = 1;
}
if (odd && choice == val) {
for (j = 0; j < val; j++) {
select[j] = 1;
}
done = 1;

i

if {(a == 1 && b == 0) {
switch (val) {
0: for (i = 0; 1 < 7; i++) {
select[jl = 0;
}

break;
4:
5: process_selection(val);
break;
default:
z = 0Q;

}

Include a mechanism to exclude all debug statements automatically.

Debug information should be excluded by default amzl shoul'd be
enabled automatically via a control file or command-line options.
Do not comment out debug statements and then uncon_upent them
when debugging. This approach requires significant ed}tlng. When
available, use a preprocessor to achieve better runtime perfor-
mance.
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Example of poor debug statement exclusion (Verilog):

// $write('Address = %h, Data = gd\n",
/7 address, data);

Example of proper debug statement exclusion (Verilog):

‘ifdef DERUG
swrite('Address = %h, Data = %d\n",

address, data);
‘endif

NAMING GUIDELINES

These guidelines suggest how to select names for various user-
defined objects and declarations. Additional restrictions on naming
can be introduced by more specific requirements.

Capitalization

Use lowercase letters for all user-defined identifiers.

Using lowercase letters reduces fatigue and stress from constantly

holding down the Shift key. Reserve uppercase letters for identifiers
representing special functions.

)

Do not rely on case mix for uniqueness of user-defined identifiers.

The source code may be processed eventually by a case-insensitive
tool. The identifiers would then lose their uniqueness. Use naming
to differentiate identifiers.
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Example of bad choice for identifier (C):

typedef struct RGB {
char red;
char green:;
char blue;

} RGB;

main {) {
RGB rgb;

Example of better choice for identifier (C):

typedef struct rgb_struct {
char red;
char green;
char blue;

} rob_typ;

main () {
rgb_tvp rgb;

In a case-insensitive language, do not rely on case mix for adding semantic to
identifiers.
Instead of using the case of identifiers to document variable t‘ypes,
use naming (prefix, suffix) to self-document identifiers. C0n51st.ent
case usage for a given identifier cannot be enforced by the compiler
and therefore may end up being used incorrectly.

Example of poor choice of identifier (VHDL):

package Pci is
type command is {MEM, IO, CONFIG);

procedure readCycle (ADDRESS: in ...;
data: out ...});
end Pci;
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Example of proper choice of identifier (VHDL):

package pci_pkg is
type command_typ is (MEM, IO, CONFIG);
proceedure read_cycle (address_in: in eee:

data_out: out ...};
end pci_pkg:

Use uppercase letters for constant identifiers {runtime or compile-time).

The case differentiates between a symbolic literal value and a vari-
able,

Example (Verilog):

module block(...):

’

‘*define DEBUG
parameter WIDTH = 4;

endmodul e
Separate words using an underscore; do not separate words by mixing upper-

case and lowercase letters

It can be difficult to read variables that use case to separate word
boundaries. Using spacing between words is more natural. Tn a
case-insensitive language or if the code is processed through a case-

insensitive tool, the case convention cannot be enforced by the
compiler,

Example of poor word separation (C):
readIndexInTable = 0;

Example of proper word separation (C):

read_index_in_table = Q:

T
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Identifiers

Do not use reserved words of popular languages or languages used in the
design process as user-defined identifiers.
Not vsing reserved words as identifiers avoids having to rename an
obhject to a synthetic, often meaningless, name when translating or

generating a design into another language. Popular languages to
consider are C, C++, Verilog, VHDL, PERL, OpenVera and e.

Use meaningful names for user-defined identifiers, and use a minimum of five
characters.

Avoid acronyms or meaningless names. Using at least five charac-
ters increases the likelihood of using full words. :

Example of poor identifier naming (VHDL):
if e = '1' then

c = C + 1;
end 1f;

Example of good identifier naming (VHDL):

if enable = 'l' then
count := count + 1;
end if;

Name objects according to function or purpose; avoid naming objects accord-
ing to type or implementation.

This naming convention produces more meaningful names and
automatically differentiates between similar objects with different
purposes.

Example of poor identifier naming (Verilog):

count8 <= count8 + 8'h01;
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Naming Guidelines

Example of good identifier naming (Verilog):
addr_count <= addr_count =+ 8'ho1;

Do not use identifiers that are overloaded or hidd i i i
. : en by identical
i & differant Saope. y tical deciarations

If tl}e same identifier is reused in different scopes, it may become
difficult to understand which object is being referred to.

Example of identifier overloading (Verilog):
reg [7:0] address;

begin: decode
integer address;

address = 0;

end

Example of good identifier naming (Verilog):
reg [7:0] address;

begin: decode
integer decoded_address;

decoded_address = 0;

1

end

Use suffixes to differentiate related identifiers semantically.

Thf_: suffix 'could indicate object kind such as: type, constant, signal,
yanable, flip-flop etc., or the suffix could indicate pipeline process-
Ing stage or clock domains.
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Minimize identifiers in shared name spaces.

Table 1-1.

Shared name
spaces

A shared name space is shared among all of the components imple-
mented using the same language. When components define the
same identifier in a shared name space, a collision will occur when
they are integrated in the same simulation. Minimize your con-
sumption of shared name spaces.

Each language has a different type and number of shared name
spaces:

Language Name Space
Verilog Module, primitive name
‘define symbol
VHDL Library name
CiCot Non-static function name

#define symbol, macro

OpenVera Program name

Program variable, task, func.
Class, enum. type name
#define symbol, macro

e Filename

Struct, unit, enum. type name
define macro name

Sys unit members

Use prefixes to differentfate identifiers in shared space.

When declaring an identifier in a shared name space, prefix it with
a unique prefix that will ensure it will not collide with a similar
identifier declared in another component. The suffix used has to be
unigue to the anthor or the authoring group or erganization.

Example of poor shared identifier naming (e):
extend sys {

debug: bool:;
r;
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Example of good shared identifier naming {(e):
extend sys {

jb_debug: bool;
Yi

Constants

Use symbolic constants instead of “magic” hard-coded numeric values.

Numeric values have no meaning in and of themselves. Symbolic
f:onstants add meaning and are easier to change globally, This result
is especially true if several constants have an identical value but a
different meaning. If the language does not support symbolic con-
stants, use a preprocessor or a variable named appropriately.

Example of poor constant usage (C):
int table[256];

for (i = 0; 1 <= 255; i++)

Example of good constant usage (C):
#define TABLE_LENGTH 256
int table[TABLE_LENGTH] ;

for (i = 0; 1 < TABLE_LENGTH; i++)

HDL & HVL Specific

Number multi-bit objects using the range N:0.

Using this numbering range avoids accidental truncation of the top
bits when assigned to a smaller object (Verilog). This convention
also provides for a consistent way of accessing bits from a given
direction. If the object carries an integer value, the bit number rep-
resents the power-of-2 for which this bit corresponds.
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Example (Verilog):
parameter width = 16;
reg [ 7:0] byte;

reg [ 31:0] dword;
reg [width-1:0] data:;

Example (VHDL):

generic{width: integer := 16);
;Aéiable byte : unsigned ( 7 downto 0);
variable dword: unsigned ( 31 downto 0);

variable data : unsigned (width-1 downto 0);

Do not specify a bit range when referring to a complete vector.

If the range of a vector is medified, all references wo_uld nf:ed to be
changed to reflect the new size of the vector. Using bit rI:;nges
implicitly means that you are referring to a su.bset of a vector. If you
want to refer to the entire vector, do not specify a bit range.

Example of poor vector reference (VHDLY):

signal count: unsigned(l5 downto 0)};

ééﬁnt(lS downto 0} <= count(l5 downto 0) + 1;
carry <= count(l5);

Example of proper vector reference (VIDL):

signal count: unsigned(l5 downto Q);

count <= count + 1;
carry <= count{count’left}:
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Preserve names across hierarchical boundaries.

Preserving names across hierarchical boundaries facilitates tracing
signals up and down a complex design hierarchy. This naming con-
vention is not applicable when a unit is instantiated more than once
or when the unit was not designed originally within the context of
the current design.

Filenames

Use filename extensions that indicate the content of the file.

Tools often switch to the proper language-sensitive function based
on the filename extension. Use a postfix on the filename itself if
different (but related) contents in the same language are provided.
Using postfixes with identical root names causes all related files to
show up next to each other when looking up the content of a direc-
tory.

Example of poor file naming (Verilog):

design.vt Testbench
design.vb Behavioral model
design.vr RTL model
design.vg Gate-level model

Example of good file naming (Verilog):

design_tb.v Testbench
design_beh.v Behavioral model
design_rtl.v RTL model
design_gate.v Gate-level model
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HDL CODING GUIDELINES

The following guidelines are specific to HDL descriptions. These
guidelines are presented in addition to the guidelines outlined for
general coding and naming. Additional guidelines will be needed
when describing a design to be synthesized.

Structure

Use a single compilation unit in a file.

A file should contain a single module (Verilog), or a single entity,

architecture, package, package body or configuration (VHDL).

This structure facilitates locating various model components. For
VHDL, it further reduces the amount of recompilation that may be
required.

Layout

Declare ports and arguments in logical order according to purpose of func-
tionality; do not declare ports and arguments according to direction.

Group port declarations that belong to the same interface. Grouping
port declarations facilitates locating and changing them to a new
interface. Do not order declarations output first, data input second,
and control signals last because it scatters related declarations.

VHDL Specific

Label all processes, concurrent statements and loops.

Labeling makes referring to a particular construct much easier. Ifa
particular construct is not named, some features in debugging tools
may not be available. Labeling also provides for an additional
opportunity to document the code.

Example of a named loop:
scan_bits_lp: for i in data'range locop

exit scan_bits_lp when data(i) = 'X';
end loop scan_bits_lp:

b
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Example of a named process:

clock _generator: procesg
begin

wait for 50 ns;

CLK <= not CLK:
end process clock_generatdr;

Label closing “end” keywords.

I.‘he “begm“. and “end” keywords may be separated by hundreds of
lines. Labeling matching end keywords facilitates recognizing the
end of a particular construct, If the VHDL-87 syntax does not sup-
port a labeled end keyword, add the label using a comment. ’

Example:

component FIFO

generic (...);
port (...);
end component; -- FIFO

r Use inline range constraints instead of subtypes.

Because type and subtype pames are not syntactically different,

using too many subtypes makes it hard to remember what type
remains compatible with what other type.

Example of subtype constraints:

subtype address_styp is
std_logic_vector (15 downto 0);
subtype count_styp is
integer range 15 deownto 0;

signal address: address_styp;:
signal count count_styp;

AR? Writing Testbenches; Functional Verification of HDL Models
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Example of inline range constraints:

signal address: std_logic_vector (15 downto 0);
signal count : integer range 0 to 15;

Do not use ports of mode buffer and linkage.

Buffer ports have special requirements when instantiated in a
higher level unit. Use an “out” port instead. If internal feedback is
required, use an internal feedback signal. I am still not sure what
linkage ports were designed for. Coolant fluid?

Example using an internal feedback signal:
port (was_buffer_mode: out std_logic);
signal was_buffer_mode_int: std_logic;

was_buffer mode <= was_buffer_mode_int;

Do not use blocks with ports and generics.

Ports and generics on blocks can be used to rename signals and
constants already visible, thus creating a second name for an object.
Using ports and generics on blocks reduces maintainability. Use
blocks only when a local declarative region is required (e.g., to con-
figure instantiations in a generate statement or declare an interme-

diate signal),

Do not use guarded expressions, signals and assignments, driver disconnect
and signal kinds bus and register.

These features are scheduled to be removed from the language. Fur-
thermore, they are used so little that tools may be unreliable when

using them.

Use the logical library name WORK when referring to units in the same library.

Using this logical name makes it possible for a design to be moved
or copied into another library with a different name without requir-
ing any modifications. It also eliminates the need for a particular
library name to hold the design.
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Verilog Specific

Using WORK is similar to using the relative directory name “.”,
whereas using the actual library name is similar to using a full path-

name. The former is portable to a different environment. The latter
is not.

Start every module with a * resetall directive.

Compiler directives remain active across file boundaries. A module
inherits the directives defined in earlier files. This inheritance may
create compilation-order dependencies in your model, Using the
“resetall directive ensures that your module is not affected by previ-
OIiSIY defined compiler directives and will be seif-contained prop-
erly

Avoid using " define symbols.

‘define symbols are global to the compilation and may interfere
with other symbols defined in another source file. For constant val-
ues, use parameters. If ‘define symbols must be used, undefine
them by using “undef when they are no longer needed.

Example of poor style using define symbols:

“define CYCLE 100

“define ns ¥ 1
always
begin
#0° CYCLE/Z ‘ns);
clk = ~clk;
end
Writing Testbenches: Funefional Verification nf LITM Madale ace



Coding Guidelines

Example of good style avoiding “define symbols:

parameter CYCLE = 100;

HDL Coding Guidelines

Example of good portable code:

always @ (s)

‘define ns * 1 begin
always | if (s) q <= q + 1;
begin ‘ end '
#{CYCLE/2 "ns);:
clk = ~clk; always @ (s)
end begin
*undef ns : ' $write('Q = sb\n", q);
end

Use a nonblocking assignment for registers used outside the always or initial
block where the register was assigned.

Using nonblocking assignments prevents race conditions between
blocks that read the current value of the reg and the block that

Assign regs from a single always or initial block.

Assigning regs from a single block prevents race conditions
between blocks that may be setting a reg to different values at the
updates the reg value. This assignment guarantees that simulation same time. This assignment convention guarantees that simulation
results will be the same across Verilog simulators or with different results will be the same across Verilog simulators or with different
command-line options. : command-line options.

Example of coding creating race conditions: Example of coding that creates race conditions:

always 8 (s) always @ (s)

begin begin

if (s} g =g+ 1; if (8) g <= 1;
end end
always 8 (s) . . always @ (r)
begin ! begin

Swrite("Q = %b\n’, q); . if {r) q <= 0;
end ' end

Example of good portabie code:

always @ (s or r)

i begin
I ~ if (s) q <= 1;
, else if (r) g <= 0;
! end
|
|
f
|
|
|
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. . . i
Do not disable tasks with output or inout arguments. the same across Verilog simulators or with different command-line
options.

The return value of output or inout arguments of a task that is dis-
abled is not specified in the Verilog standard. Disable the inner
begin/end block instead of disabling tasks with output or inout
arguments. This technique guarantees that simulation results will be
the samne across Verilog simulators or with different command-line
options.

Example of coding with unspecified behavior:

begin: drivé
addr <= #10 16'hZZ7%;

end
Example of coding with unspecified behavior: : .

always @ (rst)

task cpu_read; begin
?utput [15:0] rdat; : if (rst) disable drive;
begin end

if (data_rdv) begin

E?:;biedzgi; cend. Do not rfa'ad a wire after updating a register in the right-hand side of a continu-
s _ :)nl;sntatsmgnment, after a delay equal to the delay of the continuous assign-
| .
end :
endtack The Verilog standard does not specify the order of execution when

the right-hand side of a continuous assignment is updated. The con-
linucus assignment may be evaluated at the same time as the

Example of good portable code: assignment or in the next delta cycle.

task cpu_read; If you read the driven wire after a delay equal to the delay of the
output (15:0] rdat; continuous assignment, a race condition will occur. The wire may
begin: do_read : or may not have been updated.
if (data_rdy) begin . E . .
. - xam :
rdat - data; ple creating a race condition:
disakle do_read;
asgign gb = ~q;
end .
assign #5 qg = g;
initial
end begin
endtask g = 1'b0;
‘ Swrite("Qb = %b\n", gb):
. . . . . ; - #5;
Do not disable blocks containing nonblocking assignments with delays. Swrite("Q0 = ¥b\n', qq);
end

What happens to pending nonblocking assignments performed in a
disabled block is not specified in the Verilog standard. Not dis- ‘
abling this type of block guarantees that simulation results will be )
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Do not use the bitwise operators in a Boolean context.

Bitwise operators are for operating on bits. Boolean cperators are
for operating on Boolean values. They are not always interchange-
able and may yield different results. Use the bitwise operators to
indicate that you are operating on bits, not for making a decision
based on the value of particular bits.

Some code coverage tools cannot interpret a bitwise operator as a

logical operator and will not provide coverage on the various com- .
ponents of the conditions that caused the execution to take a partic-

ular branch.

Example of poor use of bitwise operator:
reg [3:0] BYTE;
reg VALID

if (BYTE & VALID) begin

end

Example of good use of Boolean operator:

reg [3:0] BYTE;

reg VALID

if (BYTE != 4'b0000 && VALID) begin

end
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APPENDIXB GLOSSARY

AO

AOP

ASIC

ATM

ATPG

BFM

CAD

CPU

CRC

CTS

DFT

DFY

DSP

Aspect-oriented.

Aspect-oriented programing.
Application-specific integrated circuit.
Asynchronous Transfer Mode.
Automatic test pattern generation.
Bus-functional model.

Computed aided design.

Central processing unit.

Cyclic redundancy check.

Clear to send.

Design for test.

Design for verification.

Digital signal processing.
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DTR

EDA

EPROM

eRM

eVC

FAA

FCS

FIFO

FPGA

FSM

GB

Gb

HDL

HVL

IEEE

LAN

LFSR

LLC

Data terminal ready.

Electronic design automation.

Erasable programmable read-only memory.
e reuse methodology developer manual.

e language verification component.
Federal aviation agency (US government).
Frame check sequence (ethernet).

First in, first out.

Field-programmable gate array.

Finite state machine.

Gigabytes.

Gigabits.

Identification.

Hardware description language

Header error check (ATM).

Hardware verification language.

Institute of electrical and electrenic engineers.
Internet protocol, intellectual property
Local area network.

Linear feedback shift register.

Link layer control (ethernet).
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MAC Media access control (ethernet).

MII Media independent interface (ethernet).

MPEG Moving picture expert group.

NASA National aeronautic and space agency (US government).
NNI Netwgrk—network interface (ATM).

00 Object-oriented.

oop Object-oriented programming.

OVL . Open verification library,

PC Personal computer,

PCI PC component interface,

PLL Phase-locked loop.

RAM Random access memory.

RGB Red, green and blue (video).

ROM Read-only memory.

RTL Register transfer level.

SDF Standard delay file.

SDH Synchronous digitial hierarchy (european SONET).
SNAP (ethernet).

SOC System on a chip.

SopP Subject-oriented programming.

SONET Synchronous optical network (north-american SDH).
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TCM

UART

UNI

VHDL

VHSIC

VLAN

VPI

Time-consuming method {e).

Universal asynchronous receiver transmitter.
Unidentified flying object.

User-network interface (ATM).

VHSIC hardware description language.
Very high-speed integrated circuit

Virtnal local area network {ethernet).

Virtual path identifier (ATM).
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AFTERWORDS

Training classes
are available.

Join the on-line
verification

This book should have given you the necessary skills to plan,
implement and manage a best-in-class verification process. The
methodologies and techniques will need to be tuned to your specific
requirements. Think of this book as providing you with a set of
Lego blocks, It is now up to you to put them together to build the
infrastructure you envision.

If you would like to attend a formal training class covering the tech-

niques presented in this book, I recommend the language and meth-

odology classes! offered by Qualis Design Corporation

(www.qualis. com). Just like this book, they focus on the meth-
odology and how to implement it efficiently, not the tools. These
classes are taught by professional engineering consultants (some-
times by myself) who spend most of their time applying these tech-
niques on leading-edge designs. The instructors draw on their
extensive industry experience to answer any question you may have
on verification, adapting the techniques to your circumstances,
often going beyond the content of the class material.

Send me email at janick@bergeron.com and ask to be added
to the verification guild mailing list. It is a moderated on-line forum

guild. to discuss verification-related issues. Verification languages, behav-
ioral modeling, testbench structures, detailed syntax of a waveform
1. Of course I am going to recommend them: I wrote the bulk of these
classes myself!
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Afterwords

Tell me where I
erred.

data trace command, scripts, PERL, makefiles, hardware emulation
are some of the topics discussed on the list. It is also a forum for
debating the content of this book as well as future books, papers
and articles on verification, This list is to verification what John

Cooley’s esnugz is to synthesis.

Despite the best effort of several reviewers and many read-
throughs, there are errors in this book. From simple grammatical
errors in the text, to syntax errors in the code samples, to functional
bugs in the algorithms. I maintain a list of errors that were found in
this edition of the book in the errata section at:

http://janick.bergeron.com/wtbh

If you find an error that is not listed, please let me know via email.
Errors will be corrected in the next edition.

2. John can be reached at jocoley@world. std.com.
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INDEX

A
Abstraction
design configuration 336
granularity for verification 94
transactions 307
Abstraction of data 145-165
files 163
lists 157
multi-dimensional arrays 155
using records for packets or
frames 146
Accelerated simulation 36
Arrays 155
faking in Verilog 156
multi-dimensional 155
ASIC verification 92
Aspect 185
Aspect-oriented
aspect, definition 185
extension points 187
limitations, e 186
ordering 188
vs. object-oriented 181

Aspect-oriented programming 181-189

Assertions 64-68
formal proof 67
implementation 65
simulation 66

specification 65
Assigning values 205
Asynchronous reference signals 236
Automatic tasks 224
Automation

eliminating human error 7

when to use 3
Autonomous response monitor 295

B

Behavioral modeling 121-226
PLL 235

Behavioral models 375-398
benefits of 123, 395
characteristics of 379
compared to RTL models 376
cost of 395
cycle accuracy 392
equivalence with RTL models 398
example of 377
intellectual property 397
modeling reset in 383
OpenVera and e 382
speed of 394
system verification 396
writing good models 390

Black-box verification 12

Board-level verification 93
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Bus-functional models 269-290
and HVLs 274
asynchronous in e 287
asynchronous in OpenVera 281
callback procedures 300, 314
calling HDL procedures from

HVL 274

client/server processes

abstracting procotol in

VHDL 329

client/server processes in VHDL 327
concurrent invocation 272
configuration 289
CPU 269
encapsulating in VHDL 327
error injection 315
multiple server instances in

VHDL 334
nonblocking 311
OpenVera interface model 274
packaging in e 142
packaging in OpenVera 139
packaging in Verilog 139
packaging in VHDL 137
reusing 20
split transactions 310
static binding in OpenVera 276
synchronous in e 282
synchronous in OpenVera 276
systern-level control 313
transaction-level interface 307
transactions 272
using qualified names in VHDL 333
VvS. response monitor 294

C
Cailback procedures 300
Capitalization
naming guidelines 443
Class 166
virtual 177
Clock multipler 235
Clock signals
aligning 233
asynchronous 236

multiplier 235
parameters, randomn generation 239
Clocks signals
time resolution 231
Code coverage 46-54
code-related metrics 79
expression coverage 52
FSM coverage 52
path coverage 51
statement coverage 48
Code reviews 32
Coding guidelines 429-460
Comments
guidelines 434
quality of 129
Component-level features 99
Concurrency
definition of 189
misuse of 197
problems with 191
with fork/join statement 199
Configuration
randomly generating 117
Configuring the design 338
Connectivity
definition of 189
Constants
naming guidelines 449
Constrainable generator 116
Co-simulators 39
Costs for optimizing 126
Coverage
code 46
expression 52
FSM 52
path 51
statement 48
functional 55
cross 59
item 57
transition 60
Coverage-driven verification 109-119
CPU bus-functional models 269
Cross-coverage 59
Cycle-accurate behavioral models 392
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Cycle-based simulation 37

D
Data abstraction 145-165
arrays 155 )
faking records in Verilog 146
files 163
lists 157
records 146
transaction descriptor 305
Data generation
abstracting 248
asynchronous 267
encapsulating 247
synchronous 246
Data tagging 343
Debug, and random configuration 340
Debug, and random strategy 119
Delta cycles 195
Design configuration 336-341
abstraction 336
downloading 338
generation 340
random 340
Directed stimulus 352-354
random filling 352
vs random 352
Directed testcases, and random
strategy 118
Directed verification 104-109
random 118
testbenches 106
testcases 105
Driving values 206

E

[
@sim event 287
adding constraints 357
all'of 199
arrays 155
aspect-oriented limitations 186
asynchronous interface 287
callback methods 300
connectivity 143
data protection 169, 176, 180

drivers 208

driving event 286

error reporting 400

first of 199

forkfjoin 199

generating sequences 364

hd]_path() 143

lists 155

object-oriented limitations 180

random stimulus 357

recommended textbook xxii

sampling event 286

scenarios 371

signal binding 144

static data members 180

synchronous interface 282

sys.any event 287

test harness 320

units vs, structs 143

variant records 152

vs. HDL xxiv

when extension 152
Encapsulating

bus-functional models 137

reset generation 244

subprograms 134

technique 131

test harness 320

in VHDL 327

Equivalence checking 9
Error injection 315
Error types 100
Event-driven simulation 34
Expression coverage 52

F

False negative 21

False positive 21

Filenames
guidelines 451

Files 163

fork/join statement 199

fork/join, emulating in VHDIL. 201

Formal verification &
equivalence checking 9

Writine Testhenches: Functional Verificatinn of HDT. Madale A&Q



model checking 10
FPGA verification 92
FSM coverage 52
Functional coverage 55-62

cross 59

definition 56

from features 111

item 57

model 111

transition 60
Functional verification

black-box 12

grey-box 15

purpose of 11

white-box 13

G

Generating clocks 230-241
aligning 233
asynchronous domains 236
muitiplier 235

parameters, random generation 239 -

timescale 231
Generating reset signals 241-245
Generators
constraints 116
design 115
random 354
slaves 259
specification 115
Global control signals 332
Grey-box verification 15
Guidelines
capitalization 443
code layout 436
code syntax 439
comments 434
constants 449
debugging 442
directory structure 430-433
filenames 451
general coding 434-443
HDL code layout 452
HDL code structure 452
HDL coding 452-460
HDL specific naming 449

identifiers 446
naming 443-451
Verilog specific 455
VHDL specific 452

H

Hardware modelers 43

HDL vs HVL xxiv

High-level modeling 121-226, 7?7-226
Hook procedures 300

HVL vs. HDL xxiv

|
Identifiers
naming guidelines 446
Implementation assertions 63
Inheritance 173
vs. instance 176
Intellectual property 42-44
behavioral models 397
hardware modelers 43
make vs. buy 42
protection 43
Interface model
asynchronous in e 287
asynchronous in OpenVera 281
clock domains in OpenVera 280
driving event in ¢ 286
in OpenVera 274
sampling event in e 286
static binding in OpenVera 276
synchronous in e 282
synchronous in OpenVera 275
Issue tracking 74-78
computerized system 77
grapevine system 75
Post-it system 76
procedural system 76

L
Language, choosing xxiii—xxvi
Linked lists 160
Linting tools 26-33
code reviews 32
limitations of 27
with ¢ 32
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with OpenVera 32

with Verilog 29

with VHDL 30
Lists 157

M
Maintaining code
commenting 129
optimizing 126
Make vs. buy 42 _
Managing random seeds 421
Metrics 78-82
code-related metrics 79
interpreting 81
quality-related metrics 80
Model checking 10
Modeling
behavioral-thinking example 123
code structure 130-139
costs for optimizing 126
data abstraction 145-165
encapsulating
bus-functional models 137
subprograms 134
technique 131
improving maintdinability 129
parallelism 189-206
portability of Verilog 218-226
race conditions 208-218
avoiding 216
initialization 214
read/write 209
write/write 212
RTL-thinking example 123
Modeling, high-level 121226

N

Naming
capitalization guidelines 443
constants 449
filenames 451
guidelines 443-451
HDL specific guidelines 449
identifiers 446

Noenblocking response monitor 295

Object-oriented

classes 166

comparison 172

copying 172

data protection 169, 176
inheritance 173
inheritance vs. instance 176
instance vs. inheritance 176
instance vs. reference 171
limitations, e 180
limitations, OpenVera 180
object instance 171

cbjects 166

polymorphism 177

private members 169
protected members 176
public members 169

static data members in ¢ 180
Verilog and VHDL 168
virtual classes 177

virtual methods 177

vs. aspect-oriented 181

Object-oriented programming 166-180
OpenVera

adding constraints 360
arrays 155

asynchronous interface 281
callback methods 301

data protection 169, 176
drivers 208

dynamic constraints 360
error reporting 400
fork/join 199

generating sequences 366
interface model 274

lists 158

muitiple clock domains 280
object-oriented limitations 180
port binding 141

random stimulus 360
recommended textbook xxii
scenarios 367

static bindings 276

stream generator 367
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stream generator, limitations 370
stream generator, lists 370
synchronous interfaces 275

test harness 320

variant records 151

virtual ports 139

vrhfix 140

vs. HDLs xxiv

P
Packaging bus-functional models
in Verilog 139
in VHDL 137
Parallelism 189-206
concurrency problems 191
driving vs assigning 205
emulating 192
implementation differences 190
misuse of concurrency 197
simulation cycle 194, 196
Path coverage 51
PLL 235
Poka-yoke 7
Polymorphism 177
Portability of Verilog
antomatic tasks 224
non-re-entrant tasks 222
race conditions 208-218
avoiding 216
initialization 214
read/write 209
write/write 212
scheduled nonblocked value 219
using disable statement 220
using ouput arguments 221
using semaphores 224
Processor bus-functional models 269
Productivity cycle 63
Productivity gap 19
Profiling 54
Programming
aspect-oriented 181-189
object-oriented 166-180

R
Race conditions 208-218
avoiding 216
initialization 214
read/write 209
read/write and synchronized
waveforms 242
write/write 212
Random clock parameters 239
Random sequences 364
scenarios 367
scenarios in e 371
scenarios in OpenVera 367
Random stability 421
Random stimulus 354-373
adding constraints 356
adding constraints in e 357
adding constraints in OpenVera 360
atomic generation 354
scenarios 367
scenarios in e 371
scenarios in OpenVera 367
sequences 364
sequences in e 364
sequences in OpenVera 366
vs. directed 352
vs. simple random function 354
Random system configuration 341
Random verification 109-119
configuration 117, 340
constraints 115
coverage model 111
debug testcases 119, 340
directed testcases 118
generators 115
managing seeds 421
progress, measuring 109
system configuration 341
testbenches 113
Reconvergence model 5-6
Records 146
faking in Verilog 146
variant records 151
Redundancy 7, 107
Reference model- 345
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vs. transfer function 347
Regression
management 425
running 423
Regression testing
for reusable components 91
Reset
encapsulation 244
modeling in e 388
modeling in OpenVera 387
modeling in Verilog 386
modeling in VHDL 384
Resolution functions 202
Response :
verifying 95
Response monitor 290-306
autonoinous 295
buffering 296
callback procedures 300
multiple transactions 304
output interface model 295
slave generator 299
timestamping 298
transaction descriptor 305
vs§ geneérator 294
vs, bus-functional models 294
Response, verifying 252-256
inspecting response visually 252
inspecting waveforms visually 255
minimizing sampling 254
sampling output 252
Retried transactions 312
Reuse
and verification 19-21
bus-functional models 20
level of verification 88
salvaging 21
slave generators 302
trust 19
verification of components 91
Revision control 68-73
configuration management 71
working with releases 72

]
Scan-based testing 17

Scoreboarding 348, 351
SDF back-annotation 412
Semaphores 224
in bus-functional models 272
Simulation cycle 194, 196
Simulation management 375426
configuration management 402419
configuration management in e 410
configuration management in
OpenVera 409
configuration management in
Verilog 403
configuration management in
VHDL 404
determining success or failure 399-
401
output files 418
cutput files and seeds 422
regression 423-426
SDF back-annotation 412
seed and output files 422
seeds 421
Simulators 33-41
acceleration 36
assertions 66
co-simulators 39
cycle-based simulation 37
event-driven simulation 34
single-kernel 41
stimulus and response 34
Slave generators 299
Sparse memory model
vsing a linked list in VHDE 160
Specification assertions 65
Specman Elite 40
compiled code 411
Split transactions 310
Statement coverage 48
Status of transactions 312
Stimulus
abstracting data generation 248
asynchronous interfaces 267
complex 262-268
deadlocks, avoiding 264
encapsulating data 247
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feedback between stimulus and
design 263
reference signals 230
simple 246-250
aligning waveforms 233
synchronous data 246
Stimulus, directed 352-354
Stimulus, random 354-373
Structure
coding guidelines for 452
System configuration 341
System-level features 99
System-level transaction interface 313
System-level verification 92

T
Test harness 320-322
encapsulation 320
VHDL 325-336
global control signals 332
implementation 332
multiple bus-functional server
instances 334
Testbenches
and formal verification 8
random 113
stopping 114
verifying 107
Testbenches, architecting 319-373
autonomous generation and
monitoring 341-351
multiple server instances in
VHDL 334
test harness in VHDL 332
Testbenches, self-checking 256-261,
341-351
data tagging 343
failure modes 341
golden vectors 258
hard coded 342
input and output vectors 257
reference model 345
scoreboarding 348, 351
simple operations 260
test harness, integration with 350

transaction-level 350
transfer function 347
Testing
and verification 16-18
scan-based 17
Time
definition of 189
Time resolution 231
Timescale 231
Timestamping transactions 298
Transaction descriptor 305
Transaction-level interface 307-316
Transactions
completion status 312
error injection 315
multiple possible 304
retries 312
split 310
systemn-level control 313
variable length 308
Transfer function 347
vs. reference model 347
Transition coverage 60
Type I error 21
Type Il error 21

u
Unit-level verification 90

v

Verification
and design rense 19-20
and testing 16-18
ASIC and FPGA 92
black-box verification 12
board-level 93
checking result of transformation 5
cost 21
definition of 1
designing for 18
formal verification 8
functional verification 11, 12-i5
grey-box verification 15
importance of 2—4
improving accuracy of 7, 107
need for specifying 86
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plan 85-120
purpose of 5
reusable components 91
strategies for 94-95
system-level verification 92
testbenches, verifying 107
tools 25-82
types of mistakes 21
unit-level verification 90
white-box verification 13
with reconvergence model 5-6
Verification languages 62-64
definition 63
productivity cycle 63
Verification plan
architecture-based features 98
compoient-level features 99
coverage-driven 109-119
definition of 87
design for verification 102
directed 104-109
testbenches 106
testcases 105
error types 100
function-based features 97
identifying features 96-101
interface-based features 96
levels of verification 88-94
prioritizing features 101
random
configuration 117
coverage model 111
debug testcases 119
directed testcases 118
generators 115
progress, measuring 109

termination conditions 114

testbenches 113
random-based 109-11%
role of 86-88

strategies for verification 94-95

system-level features 99

verifying testbenches 107
Verification reuse 20-21
Verification strategies 94-95

directed verification 104
random verification 109
verifying the response 95
Verification tools 25-82
assertions 64-68
code coverage 46-54
functional coverage 55-62
intellectual property 42-44
issue tracking 74-78
linting 26-33
metrics 78-82
revision control 68-73
simuiators 33-41
verification languages 62-64
waveform comparators 45
waveform viewers 44-46
Verilog
coding guidelines 455
configuration management
guidelines 433
recommended textbook xxii
vs. HVLs xxiv
vs, VHDL xxiii
Verilog vs. VHDL xxiii
VHDL
coding guidelines 452
recommended textbook xxii
test harness 327
vs. HVLs xxiv
vs. Verilog xxiii
VHDL vs. Verilog xxiii
Virtual classes 177
Virtual methods 177
vrhfix 140

w

Waveform comparators 45

Waveform viewers 4446
limitations of 45

White-box verification 13
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REVIEWS

“Brilliant. Janick Bergeron has built on his ground-breaking first
version of Writing Testbenches in this second edition, deeply
embedding the key additional topics of Hardware Verification Lan-
guages, and coverage-driven random-based verification. T look for-
ward to the third edition, which will no doubt add a discussion of
the SystemC verification library capabilities and extend the treat-
ment to fuil C++-based verification methods.”

- QGrant Martin, Fellow
Cadence Berkeley Labs

“In the latest edition, Mr. Bergeron continues to keeps pace with the
industry while providing world-class solution to the verification
problem. His latest edition embraces the verification paradigm shift
to HVLs and explains how to use them to achieve higher confi-
dence in a design in less time.

Mr. Bergeron not only explains how to verify today's complex
designs, but also walks through the entire design process—from
selecting the proper tools and creating a verification plan, to know-
ing when the verification effort is (finally) finished.”

- Chris Macionski, Senior Engineer
Qualis Design Corp.




“When I first heard about this book, I had a healthy amount of skep-
ticism based on the superficial nature in which most books tend to
treat verification-—lots of details about file IO, PLI etc. and a great
deal of hand waving when it comes to the important issues. But this
bock is different in that it was the first book that truly is about veri-
fication and nothing else. Tt does not avoid the issues, but tackles
them head on, If there can ever be such a thing as a 'classic book’ in
the EDA field, then this is most certainly a candidate for that honor.
Many companies out there now owe their current verification meth-
odologies to this book. From it they have learned the secrets of effi-
ciency, effectiveness and re-use as they apply to verification, and
have made their own efforts that much more valuable to their com- -
panies.”

- Brian Bailey, Chief Technologist
Mentor Graphics Corp.

“A must have bible for understanding verification issues and tech- .
niques with HDLs and HVLs, and for writing effective, readable

and reusable testbenches within a best-in-class verification pro-

cess.”

- Ben Cohen, VhdlCohen Training




